精英家教網 > 高中數學 > 題目詳情

【題目】36的所有正約數之和可按如下方法得到:因為36=22×32 , 所以36的所有正約數之和為(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,參照上述方法,可得100的所有正約數之和為( )
A.217
B.273
C.455
D.651

【答案】A
【解析】類比36的所有正約數之和的方法,有:100的所有正約數之和可按如下方法得到:因為100= ,所以100的所有正約數之和為(1+2+ )(1+5+ )=217,可求得100的所有正約數之和為217.

所以答案是:A.


【考點精析】認真審題,首先需要了解類比推理(根據兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質的推理,叫做類比推理).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3﹣3ax. (Ⅰ)若函數f(x)在x=1處的切線斜率為2,求實數a;
(Ⅱ)若a=1,求函數f(x)在區(qū)間[0,3]的最值及所對應的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓的方程為: ,直線的方程為

)當時,求直線被圓截得的弦長;

)當直線被圓截得的弦長最短時,求直線的方程;

)在()的前提下,若為直線上的動點,且圓上存在兩個不同的點到點的距離為,求點的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是對數函數.

(1) 若函數,討論的單調性;

(2),不等式的解集非空,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】三棱錐中,側面與底面垂直,.

(1)求證:;

(2)設,求與平面所成角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數 , ,(a>0).若對任意實數x1 , 都存在正數x2 , 使得g(x2)=f(x1)成立,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了調查某廠工人生產某種產品的能力,隨機抽查了20位工人某天生產該產品的數量.產品數量的分組區(qū)間為[45,55),[55,65),[65,75),[75,85),[85,95)由此得到頻率分布直方圖如圖.則產品數量位于[55,65)范圍內的頻率為;這20名工人中一天生產該產品數量在[55,75)的人數是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,半圓的直徑為 為直徑延長線上的一點, , 為半圓上任意一點,以為一邊作等邊三角形,設 .

(1)當為何值時,四邊形面積最大,最大值為多少;

(2)當為何值時, 長最大,最大值為多少.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某加油站20名員工日銷售量的頻率分布直方圖,如圖所示:

1)補全該頻率分布直方圖在[20,30)的部分,并分別計算日銷售量在 [10,20),[2030)的員工數;

2)在日銷量為[10,30)的員工中隨機抽取2人,求這兩名員工日銷量在 [2030)的概率.

查看答案和解析>>

同步練習冊答案