【題目】已知某幾何體的三視圖如圖所示(單位:cm),則此幾何體的體積為 , 表面積為

【答案】 ;
【解析】解:根據(jù)三視圖可知幾何體是一個(gè)四棱錐,

底面是一個(gè)邊長(zhǎng)為2的正方形,PE⊥面ABCD,且PE=2,

其中E、F分別是BC、AD的中點(diǎn),連結(jié)EF、PA,

∴幾何體的體積V= = ,

在△PEB中,PB= = ,同理可得PC= ,

∵PE⊥面ABCD,∴PE⊥CD,

∵CD⊥BC,BC∩PE=E,∴CD⊥面PBC,則CD⊥PC,

在△PCD中,PD= = =3,

同理可得PA=3,則PF⊥AD,

在△PDF中,PF= = = ,

∴此幾何體的表面積S=2×2+ + +

=

所以答案是:

【考點(diǎn)精析】本題主要考查了由三視圖求面積、體積的相關(guān)知識(shí)點(diǎn),需要掌握求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個(gè)側(cè)面的面積才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:函數(shù)f(x)= 的圖象的對(duì)稱中心坐標(biāo)為(1,1);命題q:若函數(shù)g(x)在區(qū)間[a,b]上是增函數(shù),則有g(shù)(a)(b﹣a)< g(x)dx<g(b)(b﹣a)成立.下列命題為真命題的是(
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】連續(xù)投擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,向量 與向量 的夾角記為α,則α 的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|+|2x﹣a|(a∈R).
(1)若f(1)<11,求a的取值范圍;
(2)若a∈R,f(x)≥x2﹣x﹣3恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,△PAD為正三角形,四邊形ABCD為直角梯形,CD∥AB,BC⊥AB,平面PAD⊥平面ABCD,點(diǎn)E、F分別為AD、CP的中點(diǎn),AD=AB=2CD=2.
(Ⅰ)證明:直線EF∥平面PAB;
(Ⅱ)求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=4x3+ ,x∈[0,1],證明:
(Ⅰ)f(x)≥1﹣2x+3x2;
(Ⅱ) <f(x)≤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,數(shù)列 的前n項(xiàng)和為Sn , 數(shù)列{bn}的通項(xiàng)公式為bn=n﹣8,則bnSn的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+2|﹣2|x+1|.
(1)求f(x)的最大值;
(2)若存在x∈[﹣2,1]使不等式a+1>f(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b是不相等的兩個(gè)正數(shù),且blna﹣alnb=a﹣b,給出下列結(jié)論:①a+b﹣ab>1;②a+b>2;③ + >2.其中所有正確結(jié)論的序號(hào)是(
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案