求方程的質(zhì)數(shù)解:p3-q5=(p+q)2
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:p,q是質(zhì)數(shù),p3-q5肯定是偶數(shù),p+q則也為偶數(shù),p>q,經(jīng)過驗(yàn)證得答案.
解答: 解:∵p3-q5=(p+q)2.有質(zhì)數(shù)解,
∴p,q是質(zhì)數(shù),p3-q5肯定是偶數(shù),p+q則也為偶數(shù),
1,3,5,7,9,11…
驗(yàn)證p=7,q=3,成立,
由p3=q5+(p+q)2,令y=p3,y=q5+(p+q)2
可判斷都隨著p,q的增大而增大.
即p=7,q=3,
點(diǎn)評:本題綜合考察了方程,函數(shù)的知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
21
01
,向量
b
=
10
2
.求向量
a
,使得A2a=b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
y≥1
x+y-4≤0
x-y≥0
,則x2+y2+4x+6y+14的最大值為( 。
A、42
B、
46
C、
42
D、46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+a
x
,且f(1)=2
(1)判斷并證明函數(shù)f(x)在其定義域上的奇偶性;
(2)證明函數(shù)f(x)在(1,+∞)上是增函數(shù);
(3)求函數(shù)f(x)在區(qū)間[2,5]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)f(x)的定義域?yàn)镽,且在[0,+∞)上為增函數(shù),問:是否存在m使f(x2-3)+f(2m-3x)>f(0)對任意x∈[0,1]都成立?若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<x<0.5,則x取何值時(shí),x(1-2x)的值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=
10x-99
x-10
,{an}為a1=1,d=2的等差數(shù)列,則f(a1)+f(a2)+f(a3)+…+f(a10)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AB=
2
,AD=AA1=1,M是A1C1的中點(diǎn).
(1)求證:CM∥平面A1BD,
(2)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高速公路收費(fèi)站入口處的安全標(biāo)識墩如圖1所示,墩的上半部分是側(cè)面全等的四棱錐P-EFGH,下半部分是長方體ABCD-EFGH.圖2、圖3分別是該標(biāo)識墩的正(主)視圖和俯視圖.
(1)求該安全標(biāo)識墩的體積;
(2)現(xiàn)在需要在安全標(biāo)識墩的表面(底面不涂)涂上反光材料,每100cm2需要反光涂料0.015千克,請問需要多少千克涂料?(參考值
10
≈3.162,結(jié)果保留兩位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案