【題目】設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對任意n∈N*,Sn是和an的等差中項(xiàng).
(1)證明:數(shù)列{an}為等差數(shù)列;
(2)若bn=-n+5,求{an·bn}的最大項(xiàng)的值并求出取最大值時(shí)n的值.
【答案】(1)見解析;(2)當(dāng)n=2或n=3時(shí),{an·bn}的最大項(xiàng)的值為6.
【解析】試題分析:(1)第(1)問,利用項(xiàng)和公式推理,最后證明數(shù)列{an}為等差數(shù)列.(2)第(2)問,先計(jì)算出an·bn,再利用二次函數(shù)求它的最大值.
試題解析:
(1)證明:由已知可得2Sn=+an,且an>0,
當(dāng)n=1時(shí),2a1=+a1,解得a1=1;
當(dāng)n≥2時(shí),有2Sn-1=+an-1,
所以2an=2Sn-2Sn-1=-+an-an-1,所以-=an+an-1,
即(an+an-1)(an-an-1)=an+an-1,
因?yàn)?/span>an+an-1>0,所以an-an-1=1(n≥2).
故數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列.
(2)由(1)可知an=n,設(shè)cn=an·bn,則cn=n(-n+5)=-n2+5n=-
因?yàn)?/span>n∈N*,當(dāng)n=2或n=3時(shí),{an·bn}的最大項(xiàng)的值為6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校、兩個(gè)班的數(shù)學(xué)興趣小組在一次數(shù)學(xué)對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩班數(shù)學(xué)興趣小組成績的平均值及方差
①班數(shù)學(xué)興趣小組的平均成績高于班的平均成績
②班數(shù)學(xué)興趣小組的平均成績高于班的平均成績
③班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差
④班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差
其中正確結(jié)論的編號為( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品在30天內(nèi)每件的銷售價(jià)(元)與時(shí)間(天)的函數(shù)關(guān)系如圖表示,該商品在30天內(nèi)日銷售量(件)與時(shí)間(天)之間的關(guān)系為函數(shù).
(1)根據(jù)提供的圖像,寫出商品每件的銷售價(jià)格與時(shí)間的函數(shù)關(guān)系式;
(2)若已知,求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天。(日銷售金額=每件的銷售價(jià)格×日銷售量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在(-∞,+∞)上有意義,且對于任意的x,y∈R,有|f(x)-f(y)|<|x-y|并且函數(shù)f(x+1)的對稱中心是(-1,0),若函數(shù)g(x)-f(x)=x,則不等式g(2x-x2)+g(x-2)<0的解集是( ).
A.B.
C.,D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①命題“x∈R,cosx>0”的否定是“x0∈R,cosx0≤0”;
②若0<a<1,則函數(shù)f(x)=x2+ax-3只有一個(gè)零點(diǎn);
③函數(shù)y=2sinxcosx在上是單調(diào)遞減函數(shù);
④若lga+lgb=lg(a+b),則a+b的最小值為4.
其中真命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,,記.
(1)求曲線在處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),若函數(shù)沒有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),求:
(1)函數(shù)的圖象在點(diǎn)(0,-2)處的切線方程;
(2)的單調(diào)遞減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com