分析 (1)令F(0)=0列方程計算m,得出F(x)的解析式,根據(jù)真數(shù)大于零列不等式組求出定義域;
(2)計算F(-x),利用對數(shù)的運算性質(zhì)得出F(-x)和F(x)的關(guān)系即可得出結(jié)論;
(3)利用對數(shù)的單調(diào)性列出不等式解出x.
解答 解:(1)F(x)=loga(x+m)-loga(1-x)=loga$\frac{x+m}{1-x}$,
∵F(0)=logam=0,
∴m=1,
∴F(x)=loga$\frac{x+1}{1-x}$,
由F(x)有定義得$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\end{array}\right.$,解得-1<x<1,
∴F(x)的定義域為{x|-1<x<1}.
(2)函數(shù)的定義域為{x|-1<x<1},關(guān)于原點對稱.
F(-x)=loga$\frac{1-x}{1+x}$=-loga$\frac{1+x}{1-x}$=-F(x),
∴F(-x)=-F(x),
∴F(x)是奇函數(shù).
(3)∵F(x)=loga(x+1)-loga(1-x)>0,
∴l(xiāng)oga(x+1)>loga(1-x),
∵a>1,∴$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\\{x+1>1-x}\end{array}\right.$,解得0<x<1.
∴當 a>1時,原不等式的解集為{x|0<x<1}.
點評 本題考查了對數(shù)函數(shù)的性質(zhì),函數(shù)奇偶性的判斷,單調(diào)性的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “x2+x-2>0”是“x>1”的充分不必要條件 | |
B. | “若am2<bm2,則a<b”的逆否命題為真命題 | |
C. | 命題“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0” | |
D. | 命題“若x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com