分析 由二次函數(shù)區(qū)間的最值可得t=-x2+2x+1的取值范圍,結(jié)合對(duì)數(shù)函數(shù)的單調(diào)性可得.
解答 解:配方可得t=-x2+2x+1=-(x-1)2+2
∵x∈[0,$\sqrt{2}$],∴當(dāng)x∈[1,$\sqrt{2}$]時(shí)t單調(diào)遞減,
當(dāng)x∈[0,1]時(shí)t單調(diào)遞增,
∴當(dāng)x=0時(shí),t取最小值1,當(dāng)x=1時(shí),t取最大值2,
∴當(dāng)x=0時(shí),y取最大值log0.51=0,
當(dāng)x=1時(shí),y取最小值log0.52=-1,
∴原函數(shù)的值域?yàn)閇-1,0],
故答案為[-1,0].
點(diǎn)評(píng) 本題考查對(duì)數(shù)函數(shù)的圖象和性質(zhì),涉及二次函數(shù)區(qū)間的最值,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0<k<1 | B. | k>1 | C. | $\frac{3}{4}$<k<1 | D. | k>1或k=$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com