2.已知i為虛數(shù)單位,若復(fù)數(shù)z滿足i3•z=1+i,則|z|=( 。
A.$\sqrt{2}$B.1C.2D.$\sqrt{3}$

分析 復(fù)數(shù)z滿足i3•z=1+i,求出z,再求出|z|.

解答 解:∵復(fù)數(shù)z滿足i3•z=1+i,
∴z=i-1,
∴|z|=$\sqrt{1+1}$=$\sqrt{2}$,
故選A.

點評 本題考查復(fù)數(shù)的運算,考查復(fù)數(shù)的模,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)f(x)=[x2-(n+1)x+1]ex-1,g(x)=$\frac{f(x)}{{x}^{2}+1}$,n∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)f(x)在R上單調(diào)遞增時,證明:對任意x1,x2∈R且x1≠x2,$\frac{g({x}_{2})+g({x}_{1})}{2}$>$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,4sinA+3cosB=5,4cosA+3sinB=2$\sqrt{3}$,則角C等于( 。
A.150°或30°B.120°或60°C.30°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a,b,c滿足c<a<b,且ac<0,那么下列各式中一定成立( 。
A.ac(a-c)>0B.c(b-a)<0C.cb2<ab2D.ab>ac

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={0,1,2},N={x|-1≤x≤1,x∈Z},則M∩N為( 。
A.(0,1)B.[0,1]C.{0,1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x,則關(guān)于x的不等式f(2x+3)+f(x)>0的解集是(  )
A.(-3,+∞)B.(-∞,-3)C.(-∞,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若$\frac{tanA-tanB}{tanA+tanB}$=$\frac{c-b}{c}$,則這個三角形必含有( 。
A.90°的內(nèi)角B.60°的內(nèi)角C.45°的內(nèi)角D.30°的內(nèi)角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=|x+$\frac{1}{x}$-ax-b|(a,b∈R),當(dāng)x∈[$\frac{1}{2}$,2]時,設(shè)f(x)的最大值為M(a,b),則M(a,b)的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=lnx+$\frac{a}{x}$.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若對任意x>0,均有x(2lna-lnx)≤a恒成立,求正數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案