16.下列命題是公理的是( 。
A.直線和直線外一點(diǎn)確定一個(gè)平面
B.過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面
C.空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)
D.平行于同一個(gè)平面的兩個(gè)平面相互平行

分析 牢記公理,利用空間幾何中的公理直接進(jìn)行判斷求解.

解答 解:在A中,直線和直線外一點(diǎn)確定一個(gè)平面是公理三的一個(gè)推論,故A錯(cuò)誤;
在B中,過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面是公理三,故B正確;
在C中,空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)是公理四的推論,故C錯(cuò)誤;
在D中,平行于同一個(gè)平面的兩個(gè)平面相互平行是平面與平面平行的判定定理,故D錯(cuò)誤.
故選:B.

點(diǎn)評(píng) 本題考查公理的判斷,是基礎(chǔ)題,解題是要認(rèn)真審題,注意平面公理的靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,點(diǎn)A、B分別是角α、β的終邊與單位圓的交點(diǎn),0<β<$\frac{π}{2}$<α<π
(I)證明:cos(α-β)=cosαcosβ+sinαsinβ;
(II)若α=$\frac{3π}{4}$,cos(α-β)=$\frac{2}{3}$,求sin2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知拋物線y2=4x的焦點(diǎn)為F,P為拋物線上一點(diǎn),過(guò)點(diǎn)P作y軸的垂線,垂足為M,若|PF|=5,則△PFM的面積為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知命題:“?x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命題,求實(shí)數(shù)m的取值集合M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{a}{x}$+lnx-1.
(1)當(dāng)a=2時(shí),求f(x)在(1,f(1))處的切線方程;
(2)若a>0,且對(duì)x∈(0,2e]時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-(1+a)x2+4ax+24a,其中常數(shù)a>1.
(1)討論f(x)的單調(diào)性;
(2)若當(dāng)x≥0時(shí),f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知集合A={x|x≤-1或x≥3},B={x|1≤x≤6},C={x|m+1≤x≤2m}
(Ⅰ)求A∩B,(∁RA)∪B;
(Ⅱ)若B∪C=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.過(guò)橢圓$\frac{{y}^{2}}{9}$+x2=1內(nèi)的一點(diǎn)P($\frac{1}{2}$,$\frac{1}{2}$)的弦,恰好被點(diǎn)P平分,則這條弦所在的直線方程為(  )
A.9x-y-4=0B.x+y+5=0C.2x+y-2=0D.9x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若f(x)=-x2+2ax與g(x)=$\frac{a}{x}$在區(qū)間[1,2]上都是減函數(shù),則實(shí)數(shù)a的取值范圍是(0,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案