14.拋物線y=9x2的焦點坐標(biāo)為( 。
A.($\frac{1}{36}$,0)B.(0,$\frac{1}{36}$)C.($\frac{9}{4}$,0)D.(0,$\frac{9}{4}$)

分析 先將方程化成標(biāo)準形式,求出p的值,即可得到焦點坐標(biāo)

解答 解:∵拋物線y=9x2,即 x2=$\frac{1}{9}$y,
∴p=$\frac{1}{18}$,$\frac{p}{2}$=$\frac{1}{36}$,
∴焦點坐標(biāo)是(0,$\frac{1}{36}$),
故選:B

點評 本題考查拋物線的標(biāo)準方程和簡單性質(zhì)的應(yīng)用,拋物線x2=2py的焦點坐標(biāo)為(0,-$\frac{p}{2}$),屬基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,a、b、c分別為A、B、C所對的邊,且2acosB+bcosA=2c,則△ABC是( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.斜三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題p:?x∈R,2${\;}^{{x}^{2}-1}$<$\frac{1}{4}$,命題q:若M為曲線y2=4x2上一點,A($\frac{5}{2}$,0),則|MA|的最小值為$\sqrt{5}$,那么下列命題為真命題的是( 。
A.(¬p)∧(¬q)B.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若實數(shù)x,y滿足$\left\{\begin{array}{l}{2x+y-7≤0}\\{x≥2}\\{y≥1}\end{array}\right.$,則目標(biāo)函數(shù)z=-x+y的最小值為(  )
A.-3B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E為AB的中點,則點B到平面D1EC的距離為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知拋物線C與雙曲線x2-y2=1有相同的焦點,且頂點在原點,則拋物線C的方程為( 。
A.y2=±2$\sqrt{2}$xB.y2=±2xC.y2=±4xD.y2=±4$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,在棱長均為2的正三棱柱ABC-A1B1C1中,點M是側(cè)棱AA1的中點,點P、Q分別是側(cè)面BCC1B1、底面ABC內(nèi)的動點,且A1P∥平面BCM,PQ⊥平面BCM,則點Q的軌跡的長度為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$經(jīng)過點D(0,1),一個焦點與短軸的兩端點連線互相垂直.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過$M(0,-\frac{1}{3})$的直線l交橢圓C于A,B兩點,判斷點D與以AB為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若復(fù)數(shù)z滿足|z|=1(i為虛數(shù)單位),則|z-2i|的最小值是1.

查看答案和解析>>

同步練習(xí)冊答案