1.若a=20.5,b=logπ3,c=-log23,則( 。
A.a<c<bB.c<a<bC.c<b<aD.b<a<c

分析 利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵a=20.5>20=1,
0=logπ1<b=logπ3<logππ=1,
c=-log23<-log21=0,
∴c<b<a.
故選:C.

點評 本題考查三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認真審題,注意指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.點P是等腰三角形ABC所在平面外一點,PA⊥平面ABC,PA=8,在△ABC中,底邊BC=6,AB=5,則P到BC的距離為( 。
A.$4\sqrt{5}$B.$\sqrt{3}$C.$3\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.甲、乙兩組各有三名同學(xué),她們在一次測試中的成績的莖葉圖如圖所示,如果分別從甲、乙兩組中隨機選取一名同學(xué),則這兩名同學(xué)的成績之差的絕對值不超過3的概率是$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知m、l是兩條不同的直線,α、β是兩個不同的平面,且m⊥α,l∥β,則下列說法正確的是( 。
A.若m∥l,則α∥βB.若α⊥β,則m∥lC.若m⊥l,則α∥βD.若α∥β,則m⊥l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在極坐標系中,已知圓C的方程是ρ=4,直線l的方程是$ρsin(θ+\frac{π}{4})=\sqrt{2}$.
(1)將直線l與圓C的極坐標方程化為直角坐標方程
(2)求直線l與圓C相交所得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知定義在R上函數(shù)f(x)滿足f(-x)+f(x)=0,且當x>0時,f(x)=1+ax,若f(-1)=-$\frac{3}{2}$,則實數(shù)a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.雙曲線$\frac{x^2}{m}-\frac{y^2}{6}=1$的一條漸近線方程為y=x,則實數(shù)m的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$,$\overrightarrow$不共線,且向量$\overrightarrow{c}$=λ$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrowyyqegph$=$\overrightarrow{a}$+(2λ-1)$\overrightarrow$,若$\overrightarrow{c}$與$\overrightarrowffi71rv$反向,則實數(shù)λ的值為(  )
A.1B.-$\frac{1}{2}$C.1或-$\frac{1}{2}$D.-1或-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對于函數(shù)f(x),如果存在非零常數(shù)T,使得當x取定義域內(nèi)的每一個值時,都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù),已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時,f(x)=x2,則y=f(x)與y=log5x的圖象的交點個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案