分析 (Ⅰ)分別利用等差數(shù)列的通項(xiàng)公式及等差數(shù)列的前n項(xiàng)和的公式由a3=24,S11=0表示出關(guān)于首項(xiàng)和公差的兩個(gè)關(guān)系式,聯(lián)立即可求出首項(xiàng)與公差,利用等差數(shù)列的前n項(xiàng)和的公式即可表示出Sn;
(Ⅱ)求出數(shù)列{bn}前n項(xiàng)和公式得到Tn是關(guān)于n的開口向下的二次函數(shù),根據(jù)n為正整數(shù),利用二次函數(shù)求最值的方法求出Tn的最大值即可.
解答 解:(Ⅰ)依題意有$\left\{\begin{array}{l}{{a}_{1}+2d=24}\\{11{a}_{1}+\frac{11×10}{2}d=0}\end{array}\right.$,
解之得$\left\{\begin{array}{l}{{a}_{1}=40}\\{d=-8}\end{array}\right.$,∴Sn=$\frac{(40+48-8n)n}{2}$=-4n2+44n.
(Ⅱ)∵Sn=-4n2+44n
∴bn=$\frac{{S}_{n}}{n}$=44-4n,
∴bn+1-bn=-4
∴{bn}為等差數(shù)列,
∴Tn=$\frac{1}{2}$(40+44-4n)n=(42-2n)n=-2n2+42n=-2(n-$\frac{21}{2}$)2+$\frac{441}{2}$
故當(dāng)n=10或n=11時(shí),Tn最大,且Tn的最大值為220.
點(diǎn)評(píng) 此題考查學(xué)生靈活運(yùn)用等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和的公式,靈活運(yùn)用二次函數(shù)求最值的方法解決實(shí)際問題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,0) | B. | (-2,0)∪(2,+∞) | C. | (-∞,-2]∪(2,+∞) | D. | [-1,0]∪[2,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com