某網(wǎng)站針對(duì)“2014年法定節(jié)假日調(diào)休安排”展開(kāi)的問(wèn)卷調(diào)查,提出了A、B、C三種放假方案,調(diào)查結(jié)果如下:
 
支持A方案
支持B方案
支持C方案
35歲以下
200
400
800
35歲以上(含35歲)
100
100
400
 
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個(gè)人,已知從“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分層抽樣的方法抽取5人看作一個(gè)總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.
(1);(2)

試題分析:(1)分層抽樣就是按比例抽樣,根據(jù)從“支持A方案”的人中抽取的人數(shù)為6,可確定抽樣比為,則n的的值為參與調(diào)查的總?cè)藬?shù)乘以;(2)將35歲以下的4人標(biāo)記為1,2,3,4,將35歲以上的1人標(biāo)記為a,列出所有的基本事件,共10種,計(jì)算事件“恰好有1人在35歲以上(含35歲)”所包含的基本事件總數(shù),代入古典概型的概率計(jì)算公式即可.
(1)根據(jù)分層抽樣按比例抽取,所以,解得
(2)35歲以下:(人)
35歲以上:(人)
設(shè):將35歲以下的4人標(biāo)記為1,2,3,4,將35歲以上的1人標(biāo)記為a,所有基本事件為:
共10種.
其中滿足條件得有4種.故.   
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

下表是某市從3月份中隨機(jī)抽取的天空氣質(zhì)量指數(shù)()和“”(直徑小于等于微米的顆粒物)小時(shí)平均濃度的數(shù)據(jù),空氣質(zhì)量指數(shù)()小于表示空氣質(zhì)量?jī)?yōu)良.
日期編號(hào)










空氣質(zhì)量指數(shù)(










小時(shí)平均濃度(










 
(1)根據(jù)上表數(shù)據(jù),估計(jì)該市當(dāng)月某日空氣質(zhì)量?jī)?yōu)良的概率;
(2)在上表數(shù)據(jù)中,在表示空氣質(zhì)量?jī)?yōu)良的日期中,隨機(jī)抽取兩個(gè)對(duì)其當(dāng)天的數(shù)據(jù)作進(jìn)一步的分析,設(shè)事件為“抽取的兩個(gè)日期中,當(dāng)天‘’的小時(shí)平均濃度不超過(guò)”,求事件發(fā)生的概率;
(3)在上表數(shù)據(jù)中,在表示空氣質(zhì)量?jī)?yōu)良的日期中,隨機(jī)抽取天,記為“小時(shí)平均濃度不超過(guò)的天數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某小賣(mài)部銷(xiāo)售一品牌飲料的零售價(jià)(元/評(píng))與銷(xiāo)售量(瓶)的關(guān)系統(tǒng)計(jì)如下:
零售價(jià)x(元/瓶)
3.0
3.2
3.4
3.6
3.8
4.0
銷(xiāo)量y(瓶)
50
44
43
40
35
28
 
已知的關(guān)系符合線性回歸方程,其中.當(dāng)單價(jià)為4.2元時(shí),估計(jì)該小賣(mài)部銷(xiāo)售這種品牌飲料的銷(xiāo)量為(    )
A.20    B.22     C.24      D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中的真命題是(     )
?若命題,命題:函數(shù)僅有兩個(gè)零點(diǎn),則命題為真命題;
?若變量的一組觀測(cè)數(shù)據(jù)均在直線上,則的線性相關(guān)系數(shù);
?若,則使不等式成立的概率是
A.??B.??C.?D.??

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期
1月
10日
2月
10日
3月
10日
4月
10日
5月
10日
6月
10日
晝夜溫差
x(℃)
10
11
13
12
8
6
就診人數(shù)
y(個(gè))
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率.
(2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+.
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?
(參考公式:==,=-).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

樣本中共有五個(gè)個(gè)體,其值分別為a,0,1,2,3,若該樣本的平均值為1,則樣本方差為( )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60][60,70][70,80][80,90][90,100].

(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;
(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在調(diào)查男女同學(xué)是否喜愛(ài)籃球的情況中,已知男同學(xué)喜愛(ài)籃球的為28人,不喜愛(ài)籃球的也是28人,而女同學(xué)喜愛(ài)籃球的為28人,不喜愛(ài)籃球的為56人,
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)試判斷是否喜愛(ài)籃球與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下表是關(guān)于新生嬰兒的性別與出生時(shí)間段調(diào)查的列聯(lián)表,那么,A=      ,B=    ,C=       ,D=       .
 
晚上
白天
總計(jì)

45
A
92

B
35
C
總計(jì)
98
D
180
 

查看答案和解析>>

同步練習(xí)冊(cè)答案