4.下列關(guān)系中正確的個數(shù)為( 。
①0∈{0}
②Φ?{0}
③{0,1}⊆{(0,1)}.
A.0B.1C.2D.3

分析 由空集的性質(zhì)、元素和集合和集合和集合的關(guān)系,即可判斷.

解答 解:①0∈{0}正確;
②Φ?{0},由空集是非空集合的真子集,故正確;
③{0,1}⊆{(0,1)},錯誤,一個為數(shù)集,一個為點集.
正確的個數(shù)為2.
故選:C.

點評 本題考查空集的性質(zhì)、元素和集合和集合和集合的關(guān)系,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,邊長為a的等邊三角形ABC的中線AF與中位線DE交于點G,已知△A′DE(A′∉平面ABC)是△ADE繞DE旋轉(zhuǎn)過程中的一個圖形,有下列說法,不正確的是(  )
A.平面A′FG⊥平面ABC
B.BC∥平面A′DE
C.三棱錐A′-DEF的體積最大值為$\frac{1}{64}{a^3}$
D.直線DF與直線A′E有可能異面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.命題p:?x0∈R,x0≤2的否定是( 。
A.¬p:?x∈R,x≤2B.¬p:?x∈R,x>2C.¬p:?x∈R,x>2D.¬p:?x∈R,x≤2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如果直線y=kx-1與雙曲線x2-y2=4的右支有兩個公共點,求k的取值范圍( 。
A.1<k<$\frac{\sqrt{5}}{2}$B.-$\frac{\sqrt{5}}{2}$<k<$\frac{\sqrt{5}}{2}$C.-$\frac{\sqrt{5}}{2}$<k<-1D.-$\frac{\sqrt{5}}{2}$<k<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.定義運算a⊕b=$\left\{\begin{array}{l}a\begin{array}{l}{\;},{a<b}\end{array}\\ b\begin{array}{l}{\;},{a≥b}\end{array}\end{array}$若函數(shù)f(x)=2x⊕2-x,則f(x)的值域是( 。
A.[1,+∞)B.(0,+∞)C.(0,1]D.$[{\frac{1}{2},1}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù) y=x2+x(-1≤x≤3}的值域是( 。
A.[0,12]B.[-$\frac{1}{4}$,12]C.[-$\frac{1}{2}$,12]D.[$\frac{3}{4}$,12]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推出正四面體的下列哪些性質(zhì),你認為比較恰當?shù)氖牵ā 。?br />①各棱長相等,同一頂點上的任兩條棱的夾角都相等;
②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等; 
③各個面都是全等的正三角形,同一頂點上的任兩條棱的夾角都相等.
A.①③B.②③C.①②D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.以$A(-\sqrt{3},0)$為圓心,4為半徑作圓,$B(\sqrt{3},0)$,C為圓上任意一點,分別連接AC,BC,過BC的中點N作BC的垂線,交AC于點M,當點C在圓上運動時,
(1)求M點的軌跡方程,并說明它是何種曲線;
(2)求直線y=kx+1截(1)所得曲線弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在數(shù)列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0)
(Ⅰ)設bn=an+1-an(n∈N*),證明{bn}是等比數(shù)列;
(Ⅱ)當q=2時,求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習冊答案