精英家教網 > 高中數學 > 題目詳情

【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

【答案】證明:(Ⅰ)取AB中點O,連接OC,OA1 ,

∵CA=CB,AB=A1A,∠BAA1=60°
∴OC⊥AB,OA1⊥AB,
∵OC∩OA1=O,
∴AB⊥平面OCA1 ,
∵CA1平面OCA1 ,
∴AB⊥A1C;
(Ⅱ)解:由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交線為AB,
所以OC⊥平面AA1B1B,故OA,OA1 , OC兩兩垂直.
以O為坐標原點, 的方向為x軸的正向,建立如圖所示的坐標系,
可得A(1,0,0),A1(0, ,0),C(0,0, ),B(﹣1,0,0),
=(1,0, ), = =(﹣1, ,0), =(0,﹣ , ),
=(x,y,z)為平面BB1C1C的法向量,

可取y=1,可得 =( ,1,﹣1),故cos< , >=﹣ ,
又因為直線與法向量的余弦值的絕對值等于直線與平面的正弦值,
故直線A1C與平面BB1C1C所成角的正弦值為:

【解析】(Ⅰ)取AB中點,連接OC,OA1 , 得出OC⊥AB,OA1⊥AB,運用AB⊥平面OCA1 , 即可證明.(Ⅱ)易證OA,OA1 , OC兩兩垂直.以O為坐標原點, 的方向為x軸的正向建立坐標系,可向量的坐標,求出平面BB1C1C的法向量,代入向量夾角公式,可得答案.
【考點精析】關于本題考查的空間中直線直線之間的位置關系和空間角的異面直線所成的角,需要了解相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1 , E、F分別是CC1 , BC的中點.
(1)求證:平面AB1F⊥平面AEF;
(2)求二面角B1﹣AE﹣F的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2lnx﹣3x2﹣11x.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x﹣2恒成,求整數a的最小值;
(3)若正實數x1 , x2滿足f(x1)+f(x2)+4(x +x )+12(x1+x2)=4,證明:x1+x2≥2.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知平面ADC∥平面A1B1C1 , B為線段AD的中點,△ABC≈△A1B1C1 , 四邊形ABB1A1為正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M為棱A1C1的中點.
(I)若N為線段DC1上的點,且直線MN∥平面ADB1A1 , 試確定點N的位置;
(Ⅱ)求平面MAD與平面CC1D所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過正方體ABCD﹣A1B1C1D1的頂點A的平面α與平面CB1D1平行,設α∩平面ABCD=m,α∩平面ABB1A1=n,那么m,n所成角的余弦值等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某程序框圖如圖所示,該程序運行后若輸出S的值是2,則判斷框內可填寫(
A.i≤2015?
B.i≤2016?
C.i≤2017?
D.i≤2018?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有4名同學去參加校學生會活動,共有甲、乙兩類活動可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪類活動,擲出點數為1或2的人去參加甲類活動,擲出點數大于2的人去參加乙類活動.
(1)求這4個人中恰有2人去參加甲類活動的概率;
(2)用X,Y分別表示這4個人中去參加甲、乙兩類活動的人數.記ξ=|X﹣Y|,求隨機變量ξ的分布列與數學期望E(ξ).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若滿足g(x)=﹣1的x有四個,則t的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓E的一個頂點為A(0,﹣1),焦點在x軸上,若橢圓右焦點到直線x﹣y+2 =0的距離為3 (Ⅰ)求橢圓E的方程;
(Ⅱ)設直線l:y=kx+m(k≠0)與該橢圓交于不同的兩點B,C,若坐標原點O到直線l的距離為 ,求△BOC面積的最大值.

查看答案和解析>>

同步練習冊答案