【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出直線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的坐標(biāo)為,若點(diǎn)是曲線截直線所得線段的中點(diǎn),求的斜率.

【答案】(1) 見解析,(2) -1.

【解析】

1)討論傾斜角α的情況,即可寫出直線的直角坐標(biāo)方程。

2)將M的極坐標(biāo)化為直角坐標(biāo),將曲線C的極坐標(biāo)化為直角坐標(biāo),并把直線參數(shù)方程代入曲線C 的直角坐標(biāo),可得

1)當(dāng)時(shí),直線的直角坐標(biāo)方程為;

當(dāng)時(shí),直線的直角坐標(biāo)方程為.

2)點(diǎn)的直角坐標(biāo)為,曲線的直角坐標(biāo)方程為,

代入曲線的直角坐標(biāo)方程,

化簡(jiǎn)得

點(diǎn)是曲線截直線所得線段的中點(diǎn)

,即

化簡(jiǎn)可得,

所以直線的斜率為-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊(duì)有名隊(duì)員,其中有名隊(duì)員打前鋒,有名隊(duì)員打后衛(wèi),甲、乙兩名隊(duì)員既能打前鋒又能打后衛(wèi).若出場(chǎng)陣容為名前鋒,名后衛(wèi),則不同的出場(chǎng)陣容共有______種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)G(x,y)滿足

(1)求動(dòng)點(diǎn)G的軌跡C的方程;

(2)過點(diǎn)Q(1,1)作直線L與曲線交于不同的兩點(diǎn),且線段中點(diǎn)恰好為Q.求的面積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠抽取了一臺(tái)設(shè)備在一段時(shí)間內(nèi)生產(chǎn)的一批產(chǎn)品,測(cè)量一項(xiàng)質(zhì)量指標(biāo)值,繪制了如圖所示的頻率分布直方圖.

(1)計(jì)算該樣本的平均值,方差;(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

(2)根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這臺(tái)設(shè)備在正常狀態(tài)下生產(chǎn)的產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差.任取一個(gè)產(chǎn)品,記其質(zhì)量指標(biāo)值為.若,則認(rèn)為該產(chǎn)品為一等品;,則認(rèn)為該產(chǎn)品為二等品;若,則認(rèn)為該產(chǎn)品為不合格品.已知設(shè)備正常狀態(tài)下每天生產(chǎn)這種產(chǎn)品1000個(gè).

(i)用樣本估計(jì)總體,問該工廠一天生產(chǎn)的產(chǎn)品中不合格品是否超過?

(ii)某公司向該工廠推出以舊換新活動(dòng),補(bǔ)足50萬元即可用設(shè)備換得生產(chǎn)相同產(chǎn)品的改進(jìn)設(shè)備.經(jīng)測(cè)試,設(shè)備正常狀態(tài)下每天生產(chǎn)產(chǎn)品1200個(gè),生產(chǎn)的產(chǎn)品為一等品的概率是,二等品的概率是,不合格品的概率是.若工廠生產(chǎn)一個(gè)一等品可獲得利潤(rùn)50元,生產(chǎn)一個(gè)二等品可獲得利潤(rùn)30元,生產(chǎn)一個(gè)不合格品虧損40元,試為工廠做出決策,是否需要換購(gòu)設(shè)備?

參考數(shù)據(jù):①;②;③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;

2)若對(duì)任意都恒成立,求證:a的最大值大于8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1左右焦點(diǎn)為F1,F2直線(1xy0與該橢圓有一個(gè)公共點(diǎn)在y軸上,另一個(gè)公共點(diǎn)的坐標(biāo)為(m,1).

1)求橢圓C的方程;

2)設(shè)P為橢圓C上任一點(diǎn),過焦點(diǎn)F1F2的弦分別為PM,PN,設(shè)λ1λ2,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放40年來,體育產(chǎn)業(yè)蓬勃發(fā)展反映了健康中國(guó)理念的普及.下圖是我國(guó)2006年至2016年體育產(chǎn)業(yè)年增加值及年增速圖.其中條形圖表示體育產(chǎn)業(yè)年增加值(單位:億元),折線圖為體育產(chǎn)業(yè)年增長(zhǎng)率(%).

(Ⅰ)從2007年至2016年這十年中隨機(jī)選出一年,求該年體育產(chǎn)業(yè)年增加值比前一年多億元以上的概率;

(Ⅱ)從2007年至2011年這五年中隨機(jī)選出兩年,求至少有一年體育產(chǎn)業(yè)年增長(zhǎng)率超過25%的概率;

(Ⅲ)由圖判斷,從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增長(zhǎng)率方差最大?從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增加值方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E,點(diǎn)A,B分別是橢圓E的左頂點(diǎn)和上頂點(diǎn),直線AB與圓Cx2+y2c2相離,其中c是橢圓的半焦距,P是直線AB上一動(dòng)點(diǎn),過點(diǎn)P作圓C的兩條切線,切點(diǎn)分別為M,N,若存在點(diǎn)P使得△PMN是等腰直角三角形,則橢圓離心率平方e2的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,已知每售出一箱酸奶的利潤(rùn)為50元,當(dāng)天未售出的酸奶降價(jià)處理,以每箱虧損10元的價(jià)格全部處理完.若供不應(yīng)求,可從其它商店調(diào)撥,每銷售1箱可獲利30元.假設(shè)該超市每天的進(jìn)貨量為14箱,超市的日利潤(rùn)為元.為確定以后的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了最近50天銷售該酸奶的市場(chǎng)日需求量,其頻率分布表如圖所示.

序號(hào)

分組

頻數(shù)(天)

頻率

1

0.16

2

12

3

0.3

4

5

5

0.1

合計(jì)

50

1

1)求,,的值;

2)求關(guān)于日需求量的函數(shù)表達(dá)式;

3)以50天記錄的酸奶需求量的頻率作為酸奶需求量發(fā)生的概率,估計(jì)日利潤(rùn)在區(qū)間內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案