雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)過正六邊形的四個頂點,焦點恰好是另外兩個頂點,則雙曲線的離心率為
 
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用余弦定理求得AE,由雙曲線的定義可得2a=AE-DE的值,由此求出e的值.
解答: 解:設(shè)正六邊形ABCDEF的邊長為1,中心為O,以AD所在直線為x軸,以O(shè)為原點,建立直角坐標(biāo)系,則c=1,
在△AEF中,由余弦定理得AE2=AF2+EF2-2AF•EFcos120°=1+1-2(-
1
2
)=3,
∴AE=
3
,2a=AE-DE=
3
-1,
∴a=
3
-1
2
,
∴e=
c
a
=
1
3
-1
2
=
3
+1,
故答案為:
3
+1.
點評:本題考查雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,計算2a=AE-DE的值是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a1=2,a4=16,
(1)求數(shù)列{an}的通項公式;
(2)若a1,a2分別是等差數(shù)列{bn}的第3項和第5項,求數(shù)列{bn}的通項公式及前n項和Sn;
(3)在(1)(2)條件下,設(shè)cn=bn•an,Tn為數(shù)列{cn}的前n項和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足an=an+1+2(n∈N*),若當(dāng)且僅當(dāng)n=9時,數(shù)列{an}的前n項和Sn取得最大值,則首項a1的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項公式an=
1
n
+
n+1
(n∈N*),則S63=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(α-β)=
1
3
,cosβ=
3
4
,α-β∈(0,
π
2
),β∈(0,
π
2
),則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用一塊長為2的正三角形紙片,剪拼成一個正三棱錐,若使它的全面積與原來的三角形面積相等,則剪拼成的三棱錐的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓的兩個焦點,P為橢圓上一點,∠F1PF2=60°,橢圓的短半軸長為b=
3
,則三角形△PF1F2的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)與函數(shù)y=lg
x+2
10
的圖象關(guān)于y=x對稱,則函數(shù)y=f(x-2)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+x在實數(shù)范圍內(nèi)( 。
A、單調(diào)遞增B、單調(diào)遞減
C、先增后減D、先減后增

查看答案和解析>>

同步練習(xí)冊答案