【題目】在長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,是的中點(diǎn),是的中點(diǎn).
(1)求證:平面;
(2)若,求平面與平面所成二面角的正弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)連接,利用中位線(xiàn)定理得出,再證明出四邊形為平行四邊形,可得出,進(jìn)而得出,然后利用線(xiàn)面平行的判定定理可得出結(jié)論;
(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線(xiàn)分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法能計(jì)算出平面與平面所成二面角的余弦值,進(jìn)而利用同角三角函數(shù)的基本關(guān)系可得出結(jié)果.
(1)連接,、分別為、的中點(diǎn),所以,
在長(zhǎng)方體中,且,
所以,四邊形為平行四邊形,,,
平面,平面,平面;
(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線(xiàn)分別為、、軸建立空間直角坐標(biāo)系,則、、、、、,
,,,,
設(shè)平面的法向量為,
由,令,可得,得,
設(shè)平面的法向量為,
由,令,得,得,
設(shè)平面與平面所成二面角的大小為,
,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問(wèn)題較為突出.某市為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理(即確定一個(gè)居民月均用水量標(biāo)準(zhǔn):用水量不超過(guò)a的部分按照平價(jià)收費(fèi),超過(guò)a的部分按照議價(jià)收費(fèi)).為了較為合理地確定出這個(gè)標(biāo)準(zhǔn),通過(guò)抽樣獲得了100位居民某年的月均用水量(單位:噸),制作了頻率分布直方圖,
(Ⅰ)用該樣本估計(jì)總體:
(1)估計(jì)該市居民月均用水量的平均數(shù);
(2)如果希望86%的居民每月的用水量不超出標(biāo)準(zhǔn),則月均用水量a的最低標(biāo)準(zhǔn)定為多少?lài)崳?/span>
(Ⅱ)若將頻率視為概率,現(xiàn)從該市某大型生活社區(qū)隨機(jī)調(diào)查3位居民的月均用水量,其中月均用水量不超過(guò)2.5噸的人數(shù)為X,求X的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺(jué)性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).
(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀.請(qǐng)?zhí)顚?xiě)下面的2×2列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
參考公式:,其中
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大學(xué)生趙敏利用寒假參加社會(huì)實(shí)踐,對(duì)機(jī)械銷(xiāo)售公司7月份至12月份銷(xiāo)售某種機(jī)械配件的銷(xiāo)售量及銷(xiāo)售單價(jià)進(jìn)行了調(diào)查,銷(xiāo)售單價(jià)和銷(xiāo)售量之間的一組數(shù)據(jù)如下表所示:
月份 | 7 | 8 | 9 | 10 | 11 | 12 |
銷(xiāo)售單價(jià)(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷(xiāo)售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根據(jù)7至11月份的數(shù)據(jù),求出關(guān)于的回歸直線(xiàn)方程;
(2)若由回歸直線(xiàn)方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5元,則認(rèn)為所得到的回歸直線(xiàn)方程是理想的,試問(wèn)(1)中所得到的回歸直線(xiàn)方程是否理想?
(3)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)售量與銷(xiāo)售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷(xiāo)售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷(xiāo)售收入-成本).
參考公式:回歸直線(xiàn)方程,其中,參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解高一新生是否愿意參加軍訓(xùn),隨機(jī)調(diào)查了80名新生,得到如下2×2列聯(lián)表
愿意 | 不愿意 | 合計(jì) | |
男 | x | 5 | M |
女 | y | z | 40 |
合計(jì) | N | 25 | 80 |
(1)寫(xiě)出表中x,y,z,M,N的值,并判斷是否有99.9%的把握認(rèn)為愿意參加軍訓(xùn)與性別有關(guān);
(2)在被調(diào)查的不愿意參加軍訓(xùn)的學(xué)生中,隨機(jī)抽出3人,記這3人中男生的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
參考公式:
附:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x=﹣1是函數(shù)f(x)x3(a2+a﹣3)x2+(2a+2)x的極大值點(diǎn),則實(shí)數(shù)a=( )
A.0B.0或﹣3C.0或3D.﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)ex+ax2(a∈R).
(1)若a=e,求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)討論函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信運(yùn)動(dòng)是由騰訊開(kāi)發(fā)的一個(gè)類(lèi)似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào),很多手機(jī)用戶(hù)加入微信運(yùn)動(dòng)后,為了讓自己的步數(shù)能領(lǐng)先于朋友,運(yùn)動(dòng)的積極性明顯增強(qiáng).微信運(yùn)動(dòng)公眾號(hào)為了解用戶(hù)的一些情況,在微信運(yùn)動(dòng)用戶(hù)中隨機(jī)抽取了100名用戶(hù),統(tǒng)計(jì)了他們某一天的步數(shù),數(shù)據(jù)整理如下:
萬(wàn)步 | |||||||
人 | 5 | 20 | 50 | 18 | 3 | 3 | 1 |
(Ⅰ)根據(jù)表中數(shù)據(jù),在如圖所示的坐標(biāo)平面中作出其頻率分布直方圖,并在縱軸上標(biāo)明各小長(zhǎng)方形的高;
(Ⅱ)若視頻率分布為概率分布,在微信運(yùn)動(dòng)用戶(hù)中隨機(jī)抽取3人,求至少2人步數(shù)多于1.2萬(wàn)步的概率;
(Ⅲ)若視頻率分布為概率分布,在微信運(yùn)動(dòng)用戶(hù)中隨機(jī)抽取2人,其中每日走路不超過(guò)0.8萬(wàn)步的有人,超過(guò)1.2萬(wàn)步的有人,設(shè),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)Γ:y2=2px(p>0)的焦點(diǎn)為F,P是拋物線(xiàn)Γ上一點(diǎn),且在第一象限,滿(mǎn)足(2,2)
(1)求拋物線(xiàn)Γ的方程;
(2)已知經(jīng)過(guò)點(diǎn)A(3,﹣2)的直線(xiàn)交拋物線(xiàn)Γ于M,N兩點(diǎn),經(jīng)過(guò)定點(diǎn)B(3,﹣6)和M的直線(xiàn)與拋物線(xiàn)Γ交于另一點(diǎn)L,問(wèn)直線(xiàn)NL是否恒過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出該定點(diǎn),否則說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com