分析 (1)由已知可求范圍$x-\frac{π}{4}∈(\frac{π}{4},\frac{π}{2})$,利用同角三角函數(shù)基本關(guān)系式可求sin(x-$\frac{π}{4}$),利用兩角和的正弦函數(shù)公式即可計(jì)算得解.
(2)利用同角三角函數(shù)基本關(guān)系式可求cosx,進(jìn)而利用倍角公式可求sin2x,cos2x的值,根據(jù)兩角和的正弦函數(shù)公式可求$sin(2x+\frac{π}{6})$的值.
解答 (本題滿分為12分)
解:(1)因?yàn)?x∈(\frac{π}{2},\frac{3π}{4})$,
所以$x-\frac{π}{4}∈(\frac{π}{4},\frac{π}{2})$,…(1分)
于是$sin(x-\frac{π}{4})=\sqrt{1-{{cos}^2}(x-\frac{π}{4})}=\frac{{7\sqrt{2}}}{10}$…(3分)
$sinx=sin[(x-\frac{π}{4})+\frac{π}{4}]=sin(x-\frac{π}{4})cos\frac{π}{4}+cos(x-\frac{π}{4})sin\frac{π}{4}$…(4分)
=$\frac{{7\sqrt{2}}}{10}×\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{10}×\frac{{\sqrt{2}}}{2}=\frac{4}{5}$.…(6分)
(2)因?yàn)?x∈(\frac{π}{2},\frac{3π}{4})$.故$cosx=-\sqrt{1-{{sin}^2}x}=-\sqrt{1-{{(\frac{4}{5})}^2}}=-\frac{3}{5}$.…(8分)
$sin2x=2sinxcosx=-\frac{24}{25}$,$cos2x=2{cos^2}x-1=-\frac{7}{25}$.…(10分)
所以中$sin(2x+\frac{π}{6})=sin2xcos\frac{π}{6}+cos2xsin\frac{π}{6}=-\frac{{7+24\sqrt{3}}}{50}$.…(12分)
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,倍角公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{29}{45}$ | B. | $\frac{13}{29}$ | C. | $\frac{9}{19}$ | D. | $\frac{19}{30}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{9}$ | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | .一個(gè)半圓 | B. | 一個(gè)圓 | C. | 兩個(gè)半圓 | D. | 兩個(gè)圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ①④ | D. | ②③ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com