13.下列四組中的f(x),g(x),表示同一個(gè)函數(shù)的是( 。
A.f(x)=1,g(x)=x0B.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1
C.f(x)=x2,g(x)=($\sqrt{x}$)4D.f(x)=x3,f(t)=t3

分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)關(guān)系也相同,判斷它們是同一函數(shù)即可.

解答 解:對(duì)于A:f(x)=1的定義域?yàn)镽,而g(x)=x0的定義域?yàn)閧x|x≠0},它們的定義域不相同,∴不是同一函數(shù);
對(duì)于B:f(x)=x-1的定義域?yàn)镽,而g(x)=$\frac{{x}^{2}}{x}$-1的定義域?yàn)閧x|x≠0},它們的定義域不相同,∴不是同一函數(shù);
對(duì)于C:f(x)=x2的定義域?yàn)镽,而g(x)=($\sqrt{x}$)4的定義域?yàn)閧x|x≥0},它們的定義域不相同,∴不是同一函數(shù);
對(duì)于D:f(x)=x3,f(t)=t3,∴他們的定義域都為R,定義域相同,對(duì)應(yīng)關(guān)系也相同,∴是同一函數(shù);
故選D.

點(diǎn)評(píng) 本題考查了判斷兩個(gè)函數(shù)是否為同一函數(shù)的問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\sqrt{x+2}$+$\frac{1}{|x|-1}$.
(1)求函數(shù)的定義域;     
(2)求f(0),f[f(2)]的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{{{x^2}-1}}{x}$-klnx(x≥1).
(1)若f(x)≥0恒成立,求k的取值范圍;
(2)若取$\sqrt{5}$=2.2361,試估計(jì)ln$\frac{5}{4}$的值.( 精確到0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=$\frac{1}{x+2}$(x≠-2),h(x)=x2+1.
(1)求f(2),h(1)的值;
(2)求f[h(2)]的值;
(3)求f(x),h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}是等差數(shù)列,cn=an+2an+1-an+1an,(n∈N*).
(1)證明數(shù)列{cn}是等差數(shù)列;
(2)如果a1+a3+…+a23=120,a2+a4+…+a24=132-12k,(k為常數(shù)),求數(shù)列{cn}的通項(xiàng)公式;
(3)在(2)的條件下,若數(shù)列{cn}的前n項(xiàng)和為Sn,問(wèn)是否存在這樣的實(shí)數(shù)k,使Sn當(dāng)且僅當(dāng)n=12時(shí)取得最小值,若存在,求出k的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)3f(x)-f($\frac{1}{x}$)=$\frac{1}{x}$,求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知g(x)=mx,G(x)=lnx.
(1)設(shè)f(x)=$\frac{G(x)}{x}$+1,求f(x)在點(diǎn)(1,f(1))處的切線方程及f(x)的單調(diào)區(qū)間;
(2)若G(x)+x+2≤g(x)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某地區(qū)山體大面積滑坡,政府準(zhǔn)備調(diào)運(yùn)一批賑災(zāi)物資共裝26輛車,從某市出發(fā)以v(km/h)的速度勻速直達(dá)災(zāi)區(qū),如果兩地公路長(zhǎng)400km,且為了防止山體再次坍塌,每?jī)奢v車的間距保持在($\frac{v}{20}$)2km.(車長(zhǎng)忽略不計(jì))設(shè)物資全部運(yùn)抵災(zāi)區(qū)的時(shí)間為y小時(shí),請(qǐng)建立y關(guān)于每車平均時(shí)速v(km/h)的函數(shù)關(guān)系式,并求出車輛速度為多少千米/小時(shí),物資能最快送到災(zāi)區(qū)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知焦點(diǎn)在y軸上的橢圓E的中心是原點(diǎn)O,離心率為$\frac{{\sqrt{3}}}{2}$,以橢圓E的短軸的兩端點(diǎn)和兩焦點(diǎn)所圍成的四邊形的周長(zhǎng)為8,直線l:y=kx+m與y軸交于點(diǎn)M,與橢圓E交于不同兩點(diǎn)A,B.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若$\overrightarrow{AM}=-3\overrightarrow{BM}$,求m2的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案