15.已知數(shù)列{an}的通項(xiàng)公式an=11-2n.
(1)求數(shù)列{an}的前n項(xiàng)和Sn;
(2)若設(shè)Tn=|a1|+|a2|+…+|an|,求Tn

分析 (1)根據(jù)等差數(shù)列的求和公式計(jì)算即可,
(2)由已知可求出數(shù)列bn的通項(xiàng)公式及前n項(xiàng)和,然后判斷從數(shù)列的項(xiàng)什么時(shí)候?yàn)檎,什么時(shí)候?yàn)樨?fù),對(duì)n分段討論,再利用等差數(shù)列的前n項(xiàng)和公式求出和.

解答 解:(1)∵an=11-2n,
∴a1=11-2×1=9,
∴Sn=$\frac{n(9+11-2n)}{2}$=-n2+10n,
∵an+1-an=-2,
∴數(shù)列{an}以9為首項(xiàng),以-2為公差的等差數(shù)列,
當(dāng)n≤5時(shí),an>0,
當(dāng)n≥6時(shí),an<0,
∴當(dāng)n≤5時(shí),Tn=-n2+10n,
當(dāng)n≥6時(shí)
∴Tn=|a1|+|a2|+…+|an|=Tn=a1+a2+…+a5-(a6+a7+…+an)=S5-Sn=n2-10+50,
∴Tn=$\left\{\begin{array}{l}{-{n}^{2}+10n,n≤5}\\{{n}^{2}-10n+50,n≥6}\end{array}\right.$.

點(diǎn)評(píng) 求數(shù)列的前n項(xiàng)和問題,關(guān)鍵是判斷出數(shù)列通項(xiàng)的特點(diǎn),然后選擇合適的求和方法;求數(shù)列的通項(xiàng),先判斷出遞推關(guān)系的特點(diǎn),然后選擇合適的求通項(xiàng)方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.?dāng)?shù)列{bn}(n∈N*)滿足b1=2,且$\frac{_{1}}{2}$+$\frac{_{2}}{{2}^{2}}$+…+$\frac{_{n}}{{2}_{n}}$=n(n∈N*),數(shù)列{an}滿足an=3log2bn(n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記f(n)=$\frac{1}{2}$($\frac{|sinn|}{sinn}$+3),Tn=$\frac{(-1){f}^{(2)}}{{a}_{1}_{1}}$+$\frac{(-1)^{f(3)}}{{a}_{2}_{2}}$+$\frac{(-1)^{f(4)}}{a{{\;}_{3}b}_{3}}$+…+$\frac{(-1)^{f(n+1)}}{{a}_{n}_{n}}$,求證:$\frac{1}{6}$≤Tn$≤\frac{5}{24}$(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=$\frac{1}{x}$在區(qū)間[1,2],[2,3],[3,4]的平均變化率分別為k1,k2,k3,則( 。
A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$,$\overrightarrow$,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$•$\overrightarrow$=2,則|$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.3B.1+$\sqrt{2}$C.7D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足$\left|\overrightarrow{a}+\overrightarrow\right|=2\sqrt{3}$、$\left|\overrightarrow{a}-\overrightarrow\right|=2$,則$\overrightarrow{a}•\overrightarrow$=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an},a1=2,點(diǎn)$({\frac{1}{2}{a_n},{a_{n+1}}+1})$在函數(shù)f(x)=2x+3的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列${b_n}={2^{a_n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow m=({sinx,1}),\overrightarrow{\;n}=({\sqrt{3}Acosx,\frac{A}{2}cos2x})({A>0})$,函數(shù)$f(x)=\overrightarrow m•\overrightarrow n$的最大值為6.
(1)求A的值及函數(shù)圖象的對(duì)稱軸方程和對(duì)稱中心坐標(biāo);
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{12}$個(gè)單位,再將所得的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在$[{0,\frac{5π}{24}}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,△ABC中的陰影部分是由曲線y=x2與直線x-y+2=0所圍成,向△ABC內(nèi)隨機(jī)投擲一點(diǎn),則該點(diǎn)落在陰影部分的概率為$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果函數(shù)f(x)的對(duì)于任意實(shí)數(shù)x,存在常數(shù)M,使不等式|f(x)|≤M|x|恒成立,就稱f(x)為有界泛函數(shù).下列四個(gè)函數(shù),屬于有界泛函數(shù)的是( 。
①f(x)=1②f(x)=x2③f(x)=(sinx+cosx)x④$f(x)=\frac{x}{{{x^2}+x+1}}$.
A.①②B.②④C.③④D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案