已知tan(α+β)=2,tan(α-β)=3,則tan2α=
 
考點(diǎn):兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:根據(jù)角的關(guān)系:2α=(α+β)+(α-β),由兩角和的正切函數(shù)公式即可求解.
解答: 解:∵tan(α+β)=2,tan(α-β)=3,
∴tan2α=tan[(α+β)+(α-β)]=
tan(α+β)+tan(α-β)
1-tan(α+β)tan(α-β)
=
2+3
1-2×3
=-1
故答案為:-1
點(diǎn)評(píng):本題主要考查了兩角和與差的正切函數(shù)公式的應(yīng)用,正確分析角的關(guān)系2α=(α+β)+(α-β)是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=ex的反函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωxsin(
π
2
+ωx)-cos2ωx-
1
2
(ω>0),其圖象兩相鄰對(duì)稱軸間的距離為
π
2

(Ⅰ)求ω的值;
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且c=
7
,f(C)=0,若向量
m
=(1,sinA)與向量
n
=(3,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象交x軸于點(diǎn)A(x0,0)和點(diǎn)B(2,0),與y軸的正半軸交于點(diǎn)C,其對(duì)稱軸是直線x=-1,tan∠BAC=2,點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)D.
(1)確定A、C、D三點(diǎn)的坐標(biāo);
(2)求過B、C、D三點(diǎn)的二次函數(shù)的解析式;
(3)若過點(diǎn)(0,3)且平行于x軸的直線與(2)小題中所求拋物線交于M、N兩點(diǎn),以MN為一邊,二次函數(shù)圖象上任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,寫出S關(guān)于P點(diǎn)縱坐標(biāo)y的函數(shù)解析式.
(4)當(dāng)
1
2
<x<4
時(shí),(3)小題中平行四邊形的面積是否有最大值?若有,請(qǐng)求出;若無,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的周期
(1)y=-2cos(-
1
2
x-1);
(2)y=|sin2x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)2+i與復(fù)數(shù)
1
3+i
在復(fù)平面上的對(duì)應(yīng)點(diǎn)分別是A、B,則∠AOB等于( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=
6+ai
3-i
(其中a∈R,i是虛數(shù)單位)的實(shí)部與虛部相等,則a=(  )
A、3B、6C、9D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin330°+(
2
-1)0+3 log32=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個(gè)正四棱錐的左視圖是一個(gè)邊長(zhǎng)為2的正三角形(如圖),則該正四棱錐的體積是( 。
A、1
B、
3
C、
4
3
3
D、2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案