5.關(guān)于函數(shù)y=log3(x-1)的單調(diào)性,下列說法正確的是( 。
A.在(0,+∞)上是減函數(shù)B.在(0,+∞)上是增函數(shù)
C.在(1,+∞)上是減函數(shù)D.在(1,+∞)上是增函數(shù)

分析 由題意利用對數(shù)函數(shù)、一次函數(shù)的性質(zhì),得出結(jié)論.

解答 解:關(guān)于函數(shù)y=log3(x-1),由x-1>0,求得它的定義域為(1,+∞),
且它在(1,+∞)上是增函數(shù),
故選:D.

點評 本題主要考查復(fù)合函數(shù)的單調(diào)性,對數(shù)函數(shù)、一次函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(理科)(1)證明:(a+b)3=a3+3a2b+3ab2+b3
(2)已知f(x)=$\frac{{x}^{3}}{1-3x+3{x}^{2}}$,記f1(x)=f(x),對任意n∈N*,滿足fn(x)=f[fn-1(x)],
①求f2($\frac{1}{3}$)的值;    
②求f10(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)$\frac{1-i}{\overline{z}}$=4+2i(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面上的對應(yīng)點所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題正確的是(  )
A.$a+\frac{1}{a}$的最小值是2B.${a^2}+\frac{1}{a^2}$的最小值是2
C.$a+\frac{1}{a}$的最大值是2D.${a^2}+\frac{1}{a^2}$的最大值是2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式組$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y-2≤0\end{array}\right.$所表示的平面區(qū)域的面積為( 。
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.數(shù)列{an}中,a1=1,an-an+1=anan+1,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)Sn為{an}的前n項和,bn=S2n-Sn,求bn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.偶函數(shù)y=f(x)在區(qū)間[0,4]上單調(diào)遞增,則有( 。
A.f(-1)>f($\frac{π}{3}$)>f(-π)B.f($\frac{π}{3}$)>f(-1)>f(-π)C.f(-π)>f($\frac{π}{3}$)>f(-1)D.f(-1)>f(-π)>f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x3+bx2+cx-1當x=-2時有極值,且在x=-1處的切線的斜率為-3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-1,2]上的最大值與最小值;
(3)若過點P(1,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.有5本不同的書,其中語文書2本,數(shù)學(xué)書2本,物理書1本,若將其隨機地并排放到書架的同一層上,則同一科目的書都相鄰的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

同步練習(xí)冊答案