(本小題滿分14分)如圖,平面平面,四邊形為矩形,△為等邊三角形.的中點,

(1)求證:;
(2)求二面角的正切值.

(1)詳見解析;(2)

解析試題分析:(1)連接,要證,只需證明,只需證明, 由已知面面垂直,易證,所以,,得到,因為,易證,所以,得,得證,即證 ;(2)由(1),得.不妨設,則.因為為等邊三角形,則
,垂足為,連接,則就是二面角的平面角,易證,求出.
試題解析:(1)證明:連結,因,的中點,

.               1分
又因平面平面,
平面,
于是.            3分

所以平面,
所以,            5分
又因,故平面
所以.            7分
(2)由(1),得.不妨設,則
因為為等邊三角形,則                  9分
,垂足為,連接,
就是二面角的平面角.                11分
中,,,,
所以,又,所以
即二面角

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的幾何體中,四邊形是矩形,平面,,,,,分別是的中點.

(1)求證:∥平面;
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在多面體中,四邊形是正方形,,,,.

(1)求證:面
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)如圖所示,證明命題“a是平面π內的一條直線,bπ外的一條直線(b不垂直于π),c是直線bπ上的投影,若ab,則ac”為真.

(2)寫出上述命題的逆命題,并判斷其真假(不需證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面為直角梯形,, ,平面,且,的中點

(1) 證明:面
(2) 求面與面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,為正三角形,平面的中點.

(1)求證:平面;
(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在幾何體中,點在平面ABC內的正投影分別為A,B,C,且,E為中點,

(1)求證;CE∥平面,
(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱柱中,四邊形為菱形,,四邊形為矩形,若,.

(1)求證:;
(2)求二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示的長方體ABCD-A1B1C1D1中,底面ABCD是邊長為2的正方形,OACBD的交點,BB1,M是線段B1D1的中點.

(1)求證:BM∥平面D1AC
(2)求證:D1O⊥平面AB1C;
(3)求二面角B-AB1-C的大小.

查看答案和解析>>

同步練習冊答案