20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)離心率為$\frac{\sqrt{3}}{2}$,它的一個(gè)頂點(diǎn)在拋物線x2=4y的準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),一條直線l與橢圓交于M、N兩點(diǎn),直線OM、ON的斜率之積為-$\frac{1}{4}$,求△MON的面積.

分析 (Ⅰ)求得拋物線的準(zhǔn)線方程,由橢圓的焦點(diǎn)在x軸上,則b=1,利用橢圓的離心率公式,即可求得a的值,即可求出橢圓C的方程;
(Ⅱ)設(shè)直線MN的方程為y=kx+m,(m≠0),代入橢圓方程,由此利用韋達(dá)定理、弦長(zhǎng)公式、點(diǎn)到直線距離公式,結(jié)合已知條件能求出△MON的面積.

解答 解:(Ⅰ)∵橢圓的焦點(diǎn)在x軸上,
拋物線x2=4y的準(zhǔn)線,y=-1,由橢圓的頂點(diǎn)在拋物線的準(zhǔn)線上,則b=1,
橢圓的離心率e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=$\frac{\sqrt{3}}{2}$,則a=2,
∴橢圓C的方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(Ⅱ)當(dāng)直線MN的斜率存在時(shí),設(shè)其方程為y=kx+m,(m≠0),設(shè)M(x1,y1),N(x2,y2),
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,消去y,得:(4k2+1)x2+8kmx+4m2-4=0,
則x1+x2=-$\frac{8km}{2{k}^{2}+1}$,x1x2=$\frac{4{m}^{2}-4}{4{k}^{2}+1}$,
∴|MN|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{(1+{k}^{2})(4{k}^{2}+1-{m}^{2})}}{4{k}^{2}+1}$,
點(diǎn)O到直線y=kx+m的距離d=$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$,
S△MON=$\frac{1}{2}$×丨MN丨×d=2$\sqrt{\frac{{m}^{2}}{4{k}^{2}+1}(1-\frac{{m}^{2}}{4{k}^{2}+1})}$,
∵k1k2=-$\frac{1}{4}$,
∴k1k2=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=$\frac{(k{x}_{1}+m)(k{x}_{2}+m)}{{x}_{1}{x}_{2}}$=$\frac{{k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}}{{x}_{1}{x}_{2}}$=$\frac{{m}^{2}-4{k}^{2}}{4{m}^{2}-4}$=-$\frac{1}{4}$,
∴4k2=2m2-1,
∴S△MON=2$\sqrt{\frac{{m}^{2}}{4{k}^{2}+1}(1-\frac{{m}^{2}}{4{k}^{2}+1})}$=2$\sqrt{\frac{1}{2}×(1-\frac{1}{2})}$=1.
∴△MON的面積1.

點(diǎn)評(píng) 本題考查橢圓方程、三角形面積的求法,考查韋達(dá)定理、弦長(zhǎng)公式、點(diǎn)到直線距離公式、直線方程、橢圓性質(zhì)等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)為F,上頂點(diǎn)為A,若直線AF與圓O:x2+y2=$\frac{{3{a^2}}}{16}$相離,則該橢圓離心率的取值范圍是( 。
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$C.$(\frac{1}{2},1)$D.$(\frac{{\sqrt{3}}}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1-4lnx}{{x}^{2}}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意的x1,x2∈[$\frac{1}{e}$,+∞),且x1≠x2,不等式$\frac{f({x}_{1})-f({x}_{2})}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$≤$\frac{k}{{{x}_{1}}^{2}•{{x}_{2}}^{2}}$恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合M={x|x2-1≤0},N=|x∈Z|$\frac{1}{2}$<2x+1<4},則M∩N=( 。
A.{1}B.{-1,0}C.{-1,0,1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,已知點(diǎn)G是△ABC的重心,過(guò)點(diǎn)G作直線與AB、AC兩邊分別交于M、N兩點(diǎn),且$\overrightarrow{AM}$=$\frac{a}{3}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{6}$$\overrightarrow{AC}$,則$\frac{2}{a-1}$+$\frac{1}{b-2}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=4|$\overrightarrow$|=2,$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,則(2$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知復(fù)數(shù)z=m(m-1)+(m2+2m-3)i;當(dāng)實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z是:
(1)實(shí)數(shù)
(2)虛數(shù)
(3)純虛數(shù)
(4)零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)若x,y滿足|x-3y|<$\frac{1}{2}$,|x+2y|<$\frac{1}{6}$,求證:|x|<$\frac{3}{10}$;
(2)求證:x4+16y4≥2x3y+8xy3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知$\underset{lim}{△x→0}$$\frac{f{(x}_{0}+△x)-f{(x}_{0}-△x)}{△x}$=(  )
A.$\frac{1}{2}$f′(x0B.f′(x0C.2f′(x0D.-f′(x0

查看答案和解析>>

同步練習(xí)冊(cè)答案