在等差數(shù)列中,,前項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),,且的公比
(1)求;(2)求

(1)
(2)

解析試題分析:(1)根據(jù)題,由于等差數(shù)列中,,前項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),,且的公比.,則可知+3+d="12," ,聯(lián)立方程組可知d=3,q=3,故可知
 
(2)在第一問的基礎(chǔ)上,由于=,故可知結(jié)論為。
考點(diǎn):等差數(shù)列和等比數(shù)列
點(diǎn)評:主要是考查了等差數(shù)列和等比數(shù)列的通項(xiàng)公式以及求和的運(yùn)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列滿足:,
(Ⅰ)求的通項(xiàng)公式及前項(xiàng)和
(Ⅱ)已知是等差數(shù)列,為前項(xiàng)和,且.求的通項(xiàng)公式,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,且
(1)當(dāng)時(shí),求出數(shù)列的所有項(xiàng);
(2)當(dāng)時(shí),設(shè),證明:;
(3)設(shè)(2)中的數(shù)列的前項(xiàng)和為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列的公差為,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的首項(xiàng),公差,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè)數(shù)列對任意的,均有成立,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知實(shí)數(shù),求證:
(2)在數(shù)列{an}中,,寫出并猜想這個(gè)數(shù)列的通項(xiàng)公式達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列是等比數(shù)列,,公比的展開式中的第二項(xiàng)(按x的降冪排列).
(1)用表示通項(xiàng)與前n項(xiàng)和;
(2)若,用表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和.數(shù)列滿足:.
(1)求的通項(xiàng).并比較的大小;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下圖是一個(gè)按照某種規(guī)律排列出來的三角形數(shù)陣

假設(shè)第行的第二個(gè)數(shù)為
(1)依次寫出第七行的所有7個(gè)數(shù)字(不必說明理由);
(2)寫出的遞推關(guān)系(不必證明),并求出的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案