【題目】已知函數(shù)的定義域為,對于任意的都有時, .

1)求;

2)證明:對于任意的

3)當時,若不等式上恒定成立,求實數(shù)的取值范圍.

【答案】(1) ; (2)詳見解析;(3) .

【解析】試題分析:1 , ;(2)令, 結合時, 即可得結果;3)先證明函數(shù)單調(diào)遞減,根據(jù),將原不等式化為,可得化簡,利用不等式恒成立可得結果..

試題解析:(1)令 , .

2)由題意當時,

由(1)知,當

所以下證,當時,

.

3

, ,假設,

故函數(shù)單調(diào)遞減,

化簡得:

, .

【方法點晴】本題主要考查抽象函數(shù)的定義域、抽象函數(shù)的單調(diào)性及抽象函數(shù)解不等式,屬于難題.根據(jù)抽象函數(shù)的單調(diào)性解不等式應注意以下三點:(1)一定注意抽象函數(shù)的定義域(這一點是同學們?nèi)菀资韬龅牡胤,不能掉以輕心);(2)注意應用函數(shù)的奇偶性(往往需要先證明是奇函數(shù)還是偶函數(shù));(3)化成 后再利用單調(diào)性和定義域列不等式組.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】“開門大吉”是中央電視臺推出的娛樂節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌

的名字,方可獲得該扇門對應的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.

(1) 完成下列2×2列聯(lián)表(見答題紙);

(2)判斷是否有90%的把握認為猜對歌曲名稱與否和年齡有關;說明你的理由.(下面的臨界值表供參考)

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3-bx2+(2-b)x+1在x=x1處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2.

(1)證明:a>0;

(2)若z=a+2b,求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班有兩個課外活動小組,其中第一小組有足球票6張,排球票4張;第二個小組有

足球票4張,排球票6張.甲從第一小組的10張票中任抽1張,乙從第二小組的10

張票中任抽1張.

(1)兩人都抽到足球票的概率是多少?

(2)兩人中至少有一人抽到足球票的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用二分法求的近似值(精確度0.1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌手機銷售商今年1,2,3月份的銷售量分別是1萬部,1.2萬部,1.3萬部,為估計以后每個月的銷售量,以這三個月的銷售為依據(jù),用一個函數(shù)模擬該品牌手機的銷售量y(單位:萬部)與月份x之間的關系,現(xiàn)從二次函數(shù) 或函數(shù) 中選用一個效果好的函數(shù)行模擬,如果4月份的銷售量為1.37萬件,則5月份的銷售量為__________萬件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在[-1,1]上的奇函數(shù)f(x),已知當x[-1,0]時,f(x)= (aR).

(1)寫出f(x)在[0,1]上的解析式;

(2)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

1)求的值;

(2)判斷函數(shù)的單調(diào)性,并用定義證明;

(3)當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出如下三個等式:;.則下列函數(shù)中,不滿足其中任何一個等式的函數(shù)是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案