【題目】已知函數(shù)

1)若f(x)[0,2]上是單調(diào)函數(shù),求a的值;

2)已知對[1,2],f(x)≤1均成立,求a的取值范圍.

【答案】1;(2

【解析】

1)根據(jù)求導(dǎo),令解得,然后分討論求解.

2)解法一:根據(jù),均成立,則成立,得到,則結(jié)合(1),時,上增,將,均成立轉(zhuǎn)化為求解即可.

1)因為

所以,

解得.

,

成立,函數(shù)上單調(diào),符合題目要求;

,

時,,當時,,

函數(shù)上不單調(diào),不符合題目要求;

,

時,,當時,

函數(shù)上不單調(diào),不符合題目要求.

綜上,若上是單調(diào)函數(shù),則取唯一值:.

2)解法一:已知,均成立,

,

,則時,,上增,

均成立等價于,

,

取交集,得,

所以的取值范圍是

解法二:根據(jù)(1),若,則上單減,

在區(qū)間上,恒成立等價于,不成立;

,則時,,函數(shù)上單減,

在區(qū)間上,,在區(qū)間上,恒成立不成立;

,則時,,函數(shù)上單增,

在區(qū)間上,,

在區(qū)間上,恒成立

解得,與相交取交集,得

,則時,,時,

函數(shù)上遞增,在上遞減,

在區(qū)間上,,

在區(qū)間上,恒成立.

設(shè),

,上遞增,,

則函數(shù)上遞增,,

因此時,均不成立.

綜上,所求的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標系中,點的極坐標是,曲線的極坐標方程為.以極點為坐標原點,極軸為軸的正半軸建立平面直角坐標系,斜率為的直線經(jīng)過點.

1)若時,寫出直線和曲線的直角坐標方程;

2)若直線和曲線相交于不同的兩點,求線段的中點的在直角坐標系中的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為了研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組: ,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)根據(jù)“25周歲以上組”的頻率分布直方圖,求25周歲以上組工人日平均生產(chǎn)件數(shù)的中位數(shù)的估計值(四舍五入保留整數(shù));

(2)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的概率;

(3)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成列聯(lián)表,并判斷是否有 的把握認為“生產(chǎn)能手與工人所在年齡組有關(guān)”?

生產(chǎn)能手

非生產(chǎn)能手

合計

25周歲以上組

25周歲以下組

合計

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.其中表示直線,β表示平面,給出如下5個命題:

①若//,則//;

②若,則;

不垂直,則不可能成立;

④若,則;

,則;

其中真命題的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市先后采用甲、乙兩種方案治理空氣污染各一年,各自隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的檢測數(shù)據(jù)進行分析,若空氣質(zhì)量指數(shù)值在[0,300]內(nèi)為合格,否則為不合格.1是甲方案檢測數(shù)據(jù)樣本的頻數(shù)分布表,如圖是乙方案檢測數(shù)據(jù)樣本的頻率分布直方圖.

1

API

[0,50]

50,100]

100,150]

150,200]

200,250]

250300]

大于300

天數(shù)

9

13

19

30

14

11

4

1)將頻率視為概率,求乙方案樣本的頻率分布直方圖中的值,以及乙方案樣本的空氣質(zhì)量不合格天數(shù);

2)求乙方案樣木的中位數(shù);

3)填寫下面2×2列聯(lián)表(如表2),并根據(jù)列聯(lián)表判斷是否有90%的把握認為該城市的空氣質(zhì)量指數(shù)值與兩種方案的選擇有關(guān).

2

甲方案

乙方案

合計

合格天數(shù)

_______

_______

_______

不合格天數(shù)

_______

_______

_______

合計

_______

_______

_______

附:

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),在以坐標原點為極點,以軸正半軸為極軸的極坐標中,圓的方程為

(1)寫出直線的普通方程和圓的直角坐標方程;

(2)若點的坐標為,圓與直線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標原點,橢圓的離心率為,雙曲線的漸近線與橢圓的交點到原點的距離均為.

1)求橢圓的標準方程;

2)若點為橢圓上的動點,三點共線,直線的斜率分別為.

i)證明:

ii)若,設(shè)直線過點,直線過點,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,直線與拋物線交于,兩點.

1)若,求直線的方程;

2)過點作直線交拋物線,兩點,若線段,的中點分別為,直線軸的交點為,求點到直線距離和的最大值.

查看答案和解析>>

同步練習(xí)冊答案