已知在△ABC中,∠A=
π
3
,BC=3,求△ABC的周長(用∠B表示).
考點:三角形中的幾何計算
專題:解三角形
分析:利用正弦定理求出三角形的外接圓的直徑,然后利用B表示出b、c,即可得到三角形的周長.
解答: 解:由正弦定理可得2R=
BC
sinA
=
3
3
2
=2
3

則b=2RsinB=2
3
sinB.
c=2RsinC=2
3
sin(
3
-B
)=2
3
(sin
3
cosB-cos
3
sinB)=2
3
3
2
cosB+
1
2
sinB)=3cosB+
3
sinB.
三角形的周長為:a+b+c=3+2
3
sinB+3cosB+
3
sinB=3+3
3
sinB+3cosB=3+6sin(B+
π
6
).
點評:本題考查正弦定理的應用,三角形中的幾何計算,兩角和與差的三角函數(shù),考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x、y滿足約束條件
x+y+5≥0
x-y≤0
y≤0
,則z=2x+4y+5的最小值為(  )
A、-10B、-15
C、-20D、-25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個空間幾何體的正視圖和側視圖都是正三角形,俯視圖是直徑為2的圓,則此空間幾何體的外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知定點E(-1,0),F(xiàn)(1,0),動點A滿足|AE|=4,線段AF的垂直平分線交AE于點M.
(1)求點M的軌跡C1的方程;
(2)拋物線C2:y2=4x與C1在第一象限交于點P,直線PF交拋物線于另一個點Q,求拋物線的POQ弧上的點R到直線PQ的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2+2x+2a與g(x)=|x-1|+|x+a|有相同的最小值,則
a
1
f(x)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某零售店近五個月的銷售額和利潤額資料如下表:
商店名稱ABCDE
銷售額x(千萬元)35679
9
利潤額y(百萬元)23345
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關關系;
(2)用最小二乘法計算利潤額y關于銷售額x的回歸直線方程;
(3)當銷售額為4(千萬元)時,利用(2)的結論估計該零售店的利潤額(百萬元).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
OA
=(1,0,2),
OB
=(0,1,3),則
AB
=( 。
A、(1,1,5)
B、(1,-1,-1)
C、(-1,1,1)
D、(1,-1,1,)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直角坐標系xoy中,以原點為極點,x軸的正半軸為極軸建立極坐標系,則曲線C1
x=t
y=2t
(t為參數(shù))與曲線C2:ρ=2相交構成的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log2x(2<x≤16)的值域是( 。
A、(1,4)
B、(1,4]
C、(0,∞)
D、(-∞,+∞)

查看答案和解析>>

同步練習冊答案