求導(dǎo):f(x)=
2x
x2+1
考點:導(dǎo)數(shù)的運算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:直接利用導(dǎo)數(shù)的運算法則求解即可.
解答: 解:f(x)=
2x
x2+1

f′(x)=
2x
x2+1
=
(2x)′(x2+1)-2x(x2+1)′
(x2+1)2
=
2(x2+1)-4x2
(x2+1)2
=
2-2x2
(x2+1)2
點評:本題考查函數(shù)的導(dǎo)數(shù)的運算法則的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為數(shù)列{an}的前n項和,Sn=nan-3n(n-1)(n∈N*),且a2=11.
(1)求a1的值;
(2)求數(shù)列{an}的前n項和Sn;
(3)設(shè)數(shù)列{bn}滿足bn=
n
Sn
,求證:b1+b2+…+bn
2
3
3n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)在x=x0處可導(dǎo),則
lim
△x→0
f(x0-2△x)-f(x0)
△x
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
3-2i
2+3i
-
3+2i
2-3i
(其中i為虛數(shù)單位)的虛部是( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項和為Sn,公比為q.
(1)如果S6=
189
4
,q=
1
2
,求a1;
(2)如果S3=14,a1=2,求q;
(3)如果a1+a3+a5=21,a2+a4+a8=42,求Sn;
(4)如果S5=15,S10=60,求S15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用min{a,b}表示a,b兩數(shù)中的最小值,若函數(shù)f(x)=min{|x|,|x+t|}的圖象關(guān)于直線x=-1對稱,若y=f(x)-
1
2
x+b有三個零點,則b的值是( 。
A、1或-1
B、
3
2
或-
3
2
C、1或
3
2
D、-1或-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊落在直線
3
x+y=0上,求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=3sinx-πx,命題p:?x∈(0,
π
2
),f(x)<0,則(  )
A、p是假命題,?p:?x∈(0,
π
2
),f(x)≥0
B、p是假命題,?p:?x0∈(0,
π
2
),f(x0)≥0
C、p是真命題,?p:?x0∈(0,
π
2
),f(x0)≥0
D、p是真命題,?p:?x∈(0,
π
2
),f(x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≤2,x∈R},B={x|log2
x
≤2,x∈Z},則A∩B=
 

查看答案和解析>>

同步練習(xí)冊答案