已知P(x,y)為圓x2+y2=4上任意一點(diǎn),則x+y的最大值為
 
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:設(shè)t=x+y,則y=t-x,則可得到x2+(t-x)2=4,整理得2x2-4tx+t2-4=0,此方程有解,根據(jù)判別式的意義得到△≥0,即可求解x+y的最大值.
解答: 解:設(shè)t=x+y,則y=t-x,
∵x2+y2=4,
∴x2+(t-x)2=4,
整理得2x2-2tx+t2-4=0,
∵x為實(shí)數(shù),
∴△=4t2-4×2(t2-4)≥0,即t2≤8,
∴-2
2
≤t≤2
2
,
∴x+y的最大值為:2
2

故答案為:2
2
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

k為何值時(shí),直線y=kx+2和橢圓2x2+3y2=6有兩個(gè)公共點(diǎn)?有一個(gè)公共點(diǎn)?沒有公共點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一次口試中,要從10道題中隨機(jī)抽出3道題進(jìn)行回答,答對(duì)其中兩道或兩道以上的題可獲得及格.某考生會(huì)回答10道題中的6道題,那么他(她)獲得及格的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直三棱柱A′B′C′-ABC,延長(zhǎng)CB到點(diǎn)D,使BD=BC,點(diǎn)E為A′D的中點(diǎn),∠ABC=90°,AB=BC=
2
,A′A=2.
(Ⅰ)證明:BE∥平面A′ACC′;
(Ⅱ)求三棱錐A′-EB′C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(0,+∞)上的函數(shù)f(x)滿足:①當(dāng)x∈[1,3)時(shí),f(x)=
x-1,1≤x≤2
3-x,2<x<3
②f(3x)=3f(x),設(shè)關(guān)于x的函數(shù)F(x)=f(x)-1的零點(diǎn)從小到大依次記為x1,x2,x3,x4,x5,…,則x1+x2+x3+x4+x5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為橢圓4x2+y2=4上的點(diǎn),O為原點(diǎn),則OP的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O:x2+y2=1,直線l:y=-1,則在⊙O上任取一點(diǎn),該點(diǎn)到直線l的距離不小于
3
2
的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=lnx,則f′(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={y|x2+y2=1},B={y|y=x},則A∩B=( 。
A、{(-
2
2
,-
2
2
),(
2
2
,
2
2
)}
B、{-
2
2
,
2
2
}
C、[-1,1]
D、{-1,1}

查看答案和解析>>

同步練習(xí)冊(cè)答案