a、b是常數(shù),關(guān)于x的一元二次方程x2+(a+b)x+3+=0有實數(shù)解記為事件A.
(1)若a、b分別表示投擲兩枚均勻骰子出現(xiàn)的點數(shù),求P(A);
(2)若a∈R、b∈R,﹣6≤a+b≤6且﹣6≤a﹣b≤6,求P(A).
解:(1)方程有實數(shù)解,(a+b)2﹣4(3+ )≥0,即a2+b2≥12
依題意,a=1、2、3、4、5、6,b=1、2、3、4、5、6,
所以,“投擲兩枚均勻骰子出現(xiàn)的點數(shù)”共有6×6=36種結(jié)果
當(dāng)且僅當(dāng)“a=1且b=1、2、3”,或“a=2且b=1、2”,或“a=3且b=1”時,a2+b2≥12不成立,
所以滿足a2+b2≥12的結(jié)果有36﹣(3+2+1)=30種,
從而P(A)= .
(2)在平面直角坐標(biāo)系aOb中,直線a+b=±6與a﹣b=±6 圍成一個正方形
正方形邊長即直線a+b=±6與a﹣b=±6之間的距離為d=
正方形的面積S=d2=72,
圓a2+b2=12的面積為S′=12π,圓在正方形內(nèi)部,
所以P(A)= .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

a、b是常數(shù),關(guān)于x的一元二次方程x2+(a+b)x+3+
ab2
=0
有實數(shù)解記為事件A.
(1)若a、b分別表示投擲兩枚均勻骰子出現(xiàn)的點數(shù),求P(A);
(2)若a∈R、b∈R,-6≤a≤6且-6≤b≤6,求P(A).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a、b是常數(shù),關(guān)于x的一元二次方程x2+(a+b)x+3+
ab2
=0有實數(shù)解記為事件A.
(1)若a、b分別表示投擲兩枚均勻骰子出現(xiàn)的點數(shù),求P(A);
(2)若a∈R、b∈R,-6≤a+b≤6且-6≤a-b≤6,求P(A).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

a、b是常數(shù),關(guān)于x的一元二次方程x2+(a+b)x+3+
ab
2
=0
有實數(shù)解記為事件A.
(1)若a、b分別表示投擲兩枚均勻骰子出現(xiàn)的點數(shù),求P(A);
(2)若a∈R、b∈R,-6≤a≤6且-6≤b≤6,求P(A).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省沈陽二中等重點中學(xué)協(xié)作體高考預(yù)測數(shù)學(xué)試卷08(文科)(解析版) 題型:解答題

a、b是常數(shù),關(guān)于x的一元二次方程x2+(a+b)x+3+=0有實數(shù)解記為事件A.
(1)若a、b分別表示投擲兩枚均勻骰子出現(xiàn)的點數(shù),求P(A);
(2)若a∈R、b∈R,-6≤a+b≤6且-6≤a-b≤6,求P(A).

查看答案和解析>>

同步練習(xí)冊答案