直線4x+3y-5=0與圓(x-1)2+(y-2)2=9相交于A、B兩點,則AB的長度等于( 。
A、1
B、
2
C、2
2
D、4
2
考點:直線與圓相交的性質(zhì)
專題:直線與圓
分析:根據(jù)直線和圓相交的弦長公式進(jìn)行求解即可.
解答: 解:圓心坐標(biāo)為(1,2),半徑R=3,
圓心到直線的距離d=
|4+3×2-5|
32+42
=
5
5
=1
,
則|AB|=2
R2-d2
=2
9-1
=2
8
=4
2
,
故選:D
點評:本題主要考查直線和圓相交的應(yīng)用,利用弦長公式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ

(1)求曲線C的直角坐標(biāo)方程.
(2)若P(x,y)是曲線C上的一動點,求x+2y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若數(shù)列{an}是等差數(shù)列,對于bn=(
1
n
)(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列,類比上述性質(zhì),若{cn}是各項為正數(shù)的等比數(shù)列,則數(shù)列{dn}(d>0)也是等比數(shù)列,寫出dn的表達(dá)式,并且證明你類比得到的命題是否為真命題.(2)設(shè)x>0,y>0,證明不等式(x2+y2 
1
2
>(x3+y3 
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8個人坐成一排,現(xiàn)要調(diào)換其中3個人中每一個人的位置,其余5個人的位置不變,則不同的調(diào)換方式有( 。
A、C83
B、C83A83
C、C83A22
D、3C83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心在(2,-1),且過點(3,0)的圓的方程為( 。
A、(x+2)2+(y-1)2=2
B、(x-2)2+(y+1)2=2
C、(x+2)2+(y-1)2=
2
D、(x-2)2+(y+1)2=
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于四個正數(shù)x,y,z,w,如果xw<yz,那么稱(x,y)是(z,w)的“下位序?qū)Α保?br />(1)對于2,3,7,11,試求(2,7)的“下位序?qū)Α保?br />(2)設(shè)a,b,c,d均為正數(shù),且(a,b)是(c,d)的“下位序?qū)Α保嚺袛?span id="cbumv32" class="MathJye">
c
d
,
a
b
,
a+c
b+d
之間的大小關(guān)系;
(3)設(shè)正整數(shù)n滿足條件:對集合{t|0<t<2014}內(nèi)的每個m∈N+,總存在k∈N+,使得(m,2014)是(k,n)的“下位序?qū)Α保遥╧,n)是(m+1,2015)的“下位序?qū)Α保笳麛?shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>0,b>0
)的右頂點為A,點M在橢圓上,且它的橫坐標(biāo)為1,點B(0,
3
),且
AB
=2
AM

(1)求橢圓的方程;
(2)若過點A的直線l與橢圓交于另一點N,若線段AN的垂直平分線經(jīng)過點(
6
13
,0),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+4x-3在區(qū)間[0,2]上的最小值為-4,求a的值.

查看答案和解析>>

同步練習(xí)冊答案