(12分)
如圖,已知四棱錐
的底面為矩形,
且
平面
分別為
的中點.
(Ⅰ)求證:
;
(Ⅱ)求二面角
的大小值.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)如圖,PA垂直于矩形 ABCD所在的平面,M、N分別是AB、PC的中點
⑴求證:MN∥平面PAD;
⑵若
,
求證:MN
⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,三棱錐
P-
ABC中,已知
PA^平面
ABC,
PA=3,
PB=
PC=
BC="6," 求二面角
P-
BC-
A的正弦值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)如圖,在一個由矩形
與正三角形
組合而成的平面圖形中,
現(xiàn)將正三角形
沿
折成四棱錐
,使
在平面
內的射影恰好在邊
上.
(1)求證:平面
⊥平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,平行四邊形ABCD中,
沿BD將
折起,使面
面
,連結AC,則在四面體ABCD的四個面中,互相垂直的平面共有( )對
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
((本小題滿分12分)
在邊長為5的菱形ABCD中,AC=8,F(xiàn)沿對角線BD把△ABD折起,折起后使∠ADC的余弦值為
(I)求證:平面ABD⊥平面CBD;
(II)若M是AB的中點,求折起后AC與平面MCD所成角的一個三角函數(shù)值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
將正方形ABCD沿對角線BD折成一個120°的二面角,點C到達點C1,這時異面直線AD與BC1所成的角的余弦值是
( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,空間四邊形OABC中,=a,=b,=c,點M在OA上,且OM=MA,N為BC中點,則等于 ( )
A.-a+b+c | B.a(chǎn)-b+c | C.a(chǎn)+b-c | D.a(chǎn)+b-c |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
本小題滿分13分)
如圖,已知ABCD是邊長為2的正方形,
平面ABCD,
平面ABCD,且FB=2DE=2。
(1)求點E到平面FBC的距離;
(2)求證:平面
平面AFC。
查看答案和解析>>