7.若函數(shù)f(x)=x3+2x2+mx-5是R上的單調(diào)遞增函數(shù),則m的取值范圍是$[\frac{4}{3},+∞)$.

分析 根據(jù)函數(shù)f(x)在(-∞,+∞)內(nèi)單調(diào)遞增,得出f′(x)≥0恒成立,利用判別式△≤0,求出m的取值范圍.

解答 解:∵函數(shù)f(x)=x3+2x2+mx-5在(-∞,+∞)內(nèi)單調(diào)遞增,
∴f′(x)=3x2+4x+m≥0恒成立,
即△=16-4×3m≤0,
解得m≥$\frac{4}{3}$;
∴m的取值范圍是m≥$\frac{4}{3}$
故答案為:[$\frac{4}{3},+∞)$.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性問(wèn)題,也考查了一元二次不等式的恒成立問(wèn)題,是常規(guī)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知α為第三象限角,且cosα=-$\frac{{\sqrt{5}}}{5}$,則tan2α的值為( 。
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)已知tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,求$\frac{cosα+sinα}{cosα-sinα}$的值;
(2)已知β,β均為銳角,且cos(α+β)=$\frac{\sqrt{5}}{5}$,sin(α-β)=$\frac{\sqrt{10}}{10}$,求β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x),g(x)的定義域均為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),f(x)+g(x)=ex,其中e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求f(x),g(x)的解析式,并證明:當(dāng)x>0時(shí),f(x)>0,g(x)>1
(Ⅱ)若關(guān)于x的不等式2mf(x)≤2g(x)-ex-m-1在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=x+$\frac{2}{x}$(x>0)的單調(diào)減區(qū)間是( 。
A.(2,+∞)B.(0,2)C.($\sqrt{2}$,+∞)D.(0,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在不等邊△ABC中,a2<b2+c2,則A的取值范圍是(  )
A.90°<A<180°B.45°<A<90°C.60°<A<90°D.0°<A<90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合A={x|log2(x2-2x-8)<4},B={x|$\frac{1}{4}$<2${\;}^{{x^2}-x}}$<64}.
(1)求(∁RA)∪B;
(2)若(a,a+1)⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在正項(xiàng)等比數(shù)列{an}中,a4+a3-a2-a1=1,則a5+a6的最小值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.角α與角β的終邊互為反向延長(zhǎng)線,則(  )
A.α=-βB.α=180°+β
C.α=k•360°+β,k∈ZD.α=k•360°±180°+β,k∈Z

查看答案和解析>>

同步練習(xí)冊(cè)答案