雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,過焦點F2與x軸垂直的直線與雙曲線交于P,Q兩點,若△PF1Q是等邊三角形,則該雙曲線的離心率為( 。
A、
3
B、2
2
C、
6
D、2
3
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:首先,將點P(c,y0)代入雙曲線
x2
a2
-
y2
b2
=1得到:y0=
b2
a
由△PF1Q是等邊三角形所以:
|F1F2|
|PF2|
=
3
進一步解得:
3
b2=2ac
所以
3
(c2-a2)=2ac
所以整理得:
3
e2-2e-
3
=0
解得離心率.
解答: 解:不妨設(shè)P(c,y0)其中y0>0,c為雙曲線的半焦距,將點P(c,y0)代入雙曲線
x2
a2
-
y2
b2
=1得到:y0=
b2
a
由△PF1Q是等邊三角形
所以:
|F1F2|
|PF2|
=
3
進一步解得:
3
b2=2ac

所以
3
(c2-a2)=2ac
所以整理得:
3
e2-2e-
3
=0

解得:e=
3
-
3
3
(負值舍去)
故選:A
點評:本題考查的知識要點:等邊三角形的邊角關(guān)系,雙曲線的離心率及相關(guān)的運算問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=x2+(a+1)2+|x+a-1|(a∈R).
(1)若a為大于2的常數(shù),求函數(shù)y的最小值;
(2)若函數(shù)y的最小值大于3,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的焦點在x軸上,短軸長和焦距均為2.
(1)求橢圓C的標準方程及離心率;
(2)設(shè)O為原點.若點A在直線y=2上,點B在橢圓C上,且OA⊥OB,求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)loga
1-x
x+1
(0<a<1)在區(qū)間(a,1)上的值域是(1,+∞),則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AC⊥AB,AB=2AA1,M是AB的中點,△A1MC1是等腰三角形,D為CC1的中點,E為BC上一點.
(1)若EB=3CE,證明:DE∥平面A1MC1
(2)求直線BC和平面A1MC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某機械廠今年進行了五次技能考核,其中甲、乙兩名技術(shù)骨干得分的平均分相等,成績統(tǒng)計情況如莖葉圖所示(其中a是0-9的某個整數(shù)
(1)若該廠決定從甲乙兩人中選派一人去參加技能培訓(xùn),從成績穩(wěn)定性角度考慮,你認為誰去比較合適?
(2)若從甲的成績中任取兩次成績作進一步分析,在抽取的兩次成績中,求至少有一次成績在(90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的公差為d,點(an,bn)在函數(shù)f(x)=2x的圖象上(n∈N*).
(1)若a1=-2,點(2+a6,4b7)在函數(shù)f(x)的圖象上,求數(shù)列{an}的前n項和Sn;
(2)若數(shù)列{an}的公差不為0,且a1=1,a2,a4,a6成等比數(shù)列,求數(shù)列{
an
bn
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2012年倫敦奧運會倫敦站的火炬?zhèn)鬟f中邀請了5位奧運冠軍和3位歌手參加傳遞,
(Ⅰ) 若3位歌手互不相鄰,求倫敦站的不同傳遞方案的種數(shù).(直接用數(shù)字作答)
(Ⅱ)在這8位參加傳遞的人中選3人參加一項奧運宣傳活動,用X表示參加此次宣傳活動的歌手的人數(shù).
①列出X的所有可能的取值結(jié)果;        
②求隨機變量X的分布列;   
③求參加此次活動的人中歌手至少有2名的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和Sn=n2•an(n≥2),而a1=1,通過計算a2,a3,a4,猜想an=
 

查看答案和解析>>

同步練習(xí)冊答案