(14分)如圖,圓柱內有一個三棱柱,三棱柱的 底面為圓柱
底面的內接三角形,且是圓的直徑。
(I)證明:平面平面;
(II)設,在圓內隨機選取一點,記該點取自三棱柱內的概率為。
(i)當點在圓周上運動時,求的最大值;
(ii)如果平面與平面所成的角為。當取最大值時,求的值。
解:(Ⅰ)因為平面ABC,平面ABC,所以,
因為AB是圓O直徑,所以,又,所以平面,
平面,所以平面平面。
(Ⅱ)(i)設圓柱的底面半徑為,則AB=,故三棱柱的體積為
=
又因為,
所以=,當且僅當時等號成立,
從而,而圓柱的體積,
=當且僅當,即時等號成立,
所以的最大值是。
(ii)由(i)可知,取最大值時,,于是以O為坐標原點,建立空間直角坐標系(如圖),則C(r,0,0),B(0,r,0),0,r,2r),
因為平面,所以是平面的一個法向量,
設平面的法向量
,故
得平面的一個法向量為,因為
所以。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,面積為S的平面凸四邊形的第i條邊的邊長記為ai(i=1,2,3,4),此四邊形內任一點P到第i條邊的距離為hi(i=1,2,3,4),若k,則(ihi)=.類比以上性質,體積為V的三棱錐的第i個面的面積記為Si(i=1,2,3,4),此三棱錐內任一點Q到第i個面的距離記為hi(i=1,2,3,4),若K,則(ihi)=(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在正方體ABCD-A1B1C1D1中,S,E,G分別是B1D1,BC,SC的中點.
求證:直線EG∥平面BB1D1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本小題滿分12分)如圖,在三棱柱中,,,,分別為,的中點.
(1)求證:∥平面; (2)求證:平面;
(3)直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在三棱錐P—ABC中,∠APB=∠BPC=∠APC=90°,M在△ABC內,∠MPA=60°,∠MPB=45°,則∠MPC的度數(shù)為(  )
A.30°B.45°C. 75°D.60°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,為空間四點.在中,.等
邊三角形為軸運動.
(Ⅰ)當平面平面時,求;
(Ⅱ)當轉動時,是否總有?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知正方體ABCD-A1B1C1D1, O是底ABCD對角線的交點。


(2)A1C⊥面AB1D1
(3)求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,兩兩互相垂直,點,點的距離都是,點上的動點,滿足的距離是到到點距離的倍,則點的軌跡上的點到的距離的最小值是
A.  B.   
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

二面角αlβ等于120°,AB是棱l上兩點,ACBD分別在半平面α、β內,AClBDl,且AB=AC=BD=1,則CD的長等于                                             ( 。

A.                           B.
C.2                             D.

查看答案和解析>>

同步練習冊答案