1.下列函數(shù)為偶函數(shù)的是( 。
A.f(x)=x-1B.f(x)=x3+xC.f(x)=2x-2-xD.f(x)=2x+2-x

分析 分別求f(-1),f(1),判斷是否滿足f(-1)=f(1),從而判斷出前三個選項的函數(shù)不是偶函數(shù),從而得出D正確.

解答 解:A.f(-1)=-2,f(1)=0;
∴f(x)=x-1不是偶函數(shù);
B.f(-1)=-2,f(1)=2;
∴該函數(shù)不是偶函數(shù);
C.$f(-1)=-\frac{3}{2}$,f(1)=$\frac{3}{2}$;
∴該函數(shù)不是偶函數(shù);
D.f(x)的定義域為R,且f(-x)=2-x+2x=f(x);
∴該函數(shù)為偶函數(shù).
故選D.

點評 考查偶函數(shù)的定義,以及根據(jù)定義判斷一個函數(shù)是否為偶函數(shù)的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知z1、z2為復(fù)數(shù),且|z1|=2,若z1+z2=2i,則|z1-z2|的最大值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=-a2lnx+x2-ax(a∈R).
(1)試討論函數(shù)f(x)的單調(diào)性;
(2)如果a>0且關(guān)于x的方程f(x)=m有兩解x1,x2(x1<x2),證明x1+x2>2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x}-1,x>0\\-{x^2}-2x,x≤0\end{array}\right.$,若函數(shù)g(x)=f(x)+3m有3個零點,則實數(shù)m的取值范圍是(-$\frac{1}{3}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABC中,平面PAD⊥底面ABCD,其中底面ABCD為等腰梯形,AD∥BCPA=AB=BC=CD=2,PD=2$\sqrt{3}$,PA⊥PD,Q為PD的中點.
(Ⅰ)證明:CQ∥平面PAB;
(Ⅱ)求三棱錐Q-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若數(shù)列{an}是以2為首項,3為公比的等比數(shù)列,則a2+a4+a6+…+a2n的值為(  )
A.32n-1B.$\frac{{3}^{2n}-1}{4}$C.$\frac{3({3}^{2n}-1)}{4}$D.$\frac{3({3}^{n}-1)}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=-2x2+1的單調(diào)遞增區(qū)間為( 。
A.(-∞,0]B.(0,+∞)C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某校開設(shè)了數(shù)學(xué)選修課程,在選修《數(shù)學(xué)史選講》的學(xué)生中,男生和女生分別有56人和42人.現(xiàn)用分層抽樣的方法從中抽出一個容量為28的樣本,則應(yīng)抽取的女生人數(shù)是( 。
A.18B.16C.14D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=|x-1|-|x-a|(a為常數(shù)).
(1)若f(2)<f(a)-1,求實數(shù)a的取值范圍;
(2)若f(x)的值域為A,且A⊆[-2,3],求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案