有以下四個(gè)命題:
①若x,y∈R,i為虛數(shù)單位,且(x-2)i-y=-1+i,則(1+i)x+y的值為-4;
②將函數(shù)f(x)=cos(2x+)+1的圖象向左平移個(gè)單位后,對應(yīng)的函數(shù)是偶函數(shù);
③若直線ax+by=4與圓x2+y2=4沒有交點(diǎn),則過點(diǎn)(a,b)的直線與橢圓=1有兩個(gè)交點(diǎn);
④在做回歸分析時(shí),殘差圖中殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄相關(guān)指數(shù)越。
其中所有正確命題的序號為   
【答案】分析:①利用復(fù)數(shù)的四則運(yùn)算進(jìn)行求值.②利用三角函數(shù)的圖象和性質(zhì)判斷.③利用直線與圓的位置關(guān)系判斷.④利用回歸分析的知識(shí)進(jìn)行判斷.
解答:解:①由(x-2)i-y=-1+i,得x-2=1且-y=-1,解得x=3,y=1.所以x+y=4,
      所以(1+i)x+y=(1+i)4=(2i)2=-4,所以①正確.
②將函數(shù)f(x)=cos(2x+)+1的圖象向左平移個(gè)單位后,得到函數(shù)為
   此時(shí)函數(shù)不是偶函數(shù),所以②錯(cuò)誤.
③因?yàn)橹本ax+by=4與圓x2+y2=4沒有交點(diǎn),所以圓心到直線的距離,即,即點(diǎn)P(a,b)到原點(diǎn)的距離|OP|<2,
因?yàn)橛蓹E圓的方程可知,a=2,所以點(diǎn)P(a,b)在橢圓的內(nèi)部,所以過點(diǎn)(a,b)的直線與橢圓=1有兩個(gè)交點(diǎn),所以③正確.
④可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.
則對應(yīng)相關(guān)指數(shù)越大,所以④錯(cuò)誤.
故答案為:①③.
點(diǎn)評:本題主要考查命題的真假判斷,涉及的知識(shí)點(diǎn)較多,綜合性較強(qiáng),要求熟練掌握相關(guān)的知識(shí).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個(gè)命題:
①函數(shù)y=sin2x和圖象可以由y=sin(2x+
π
4
)
向右平移
π
4
個(gè)單位而得到;
②在△ABC中,若bcosB=ccosC,則△ABC一定是等腰三角形;
③|x|>3是x>4的必要條件;
④已知函數(shù)f(x)=sinx+lnx,則f′(1)的值為1+cos1.寫出所有真命題的序號
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11、已知直線a,b和平面α,有以下四個(gè)命題:①若a∥α,a∥b,則b∥α;②若a?α,b∩α=A,則a與b異面;③若a∥b,b⊥α,則a⊥α;④若a⊥b,a⊥α,則b∥α.其中真命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于直線m,n和平面α,β,有以下四個(gè)命題:
①若m∥α,n∥β,α∥β,則m∥n;
②若m∥n,m?α,n⊥β,則α⊥β;
③若α∩β=m,m∥n,則n∥α且n∥β;
④若m⊥n,α∩β=m,則n⊥α或n⊥β.
其中假命題的序號是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個(gè)命題:①若命題P:?x∈R,sinx≤1,則¬P:?x∈R,sinx>1;②?α,β∈R,使得sin(α+β)=sinα+sinβ;③若{an}為等比數(shù)列;甲:m+n=p+q(m、n、p、q∈N*)    乙:am•an=ap•aq,則甲是乙的充要條件;④設(shè)p、q是簡單命題,若“p∨q”為假命題,則“?p∧?q”為真命題.其中真命題的序號
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省雙流縣棠湖中學(xué)2012屆高三3月月考數(shù)學(xué)文科試題 題型:013

設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個(gè)命題:

(1)若α∥β,α∥γ,則β∥γ

(2)若α⊥β,m∥α,則m⊥β

(3)若m⊥α,m∥β,則α⊥β

(4)若m∥n,nα,則m∥α

其中真命題的序號是

[  ]

A.(1)(4)

B.(2)(3)

C.(2)(4)

D.(1)(3)

查看答案和解析>>

同步練習(xí)冊答案