設(shè)x,y∈R+,且x+y=1,求4xy+3的最大值.
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:利用基本不等式的性質(zhì)即可得出.
解答: 解:∵x,y∈R+,且x+y=1,
∴4xy+3≤(x+y)2+3=4,當且僅當x=y=
1
2
時取等號.
∴4xy+3的最大值是4.
點評:本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若A:|a|=3,B:a=-3,則A是B的
 
條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<a<1,0<b<1,則a+b, 2
ab
 , a2+b2
,2ab中最大的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x),滿足f(1)=
1
5
,且對任意的x都有f(x+3)=
1
-f(x)
,則f(7)=
 
;f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinx,cos2x-
1
2
),
b
=(cosx,-
3
),其中x∈R,函數(shù)f(x)=5
a
b
-3
(1)求函數(shù)f(x)的最小正周期;
(2)確定函數(shù)f(x)的單調(diào)區(qū)間;
(3)函數(shù)f(x)的圖象可以由函數(shù)y=5sin2x的圖象經(jīng)過怎樣的變化而得到?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別是a,b,c,a2+b2=2c2,則角C的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=cosx,則f′(
π
2
)=( 。
A、-1
B、
3
2
C、0
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=4,|
b
|=3.
(1)
a
b
,求
a
b
的數(shù)量積;
(2)
a
b
,求
a
b
的數(shù)量積;
(3)
a
b
的夾角為60°時,求
a
b
的數(shù)量積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平行四邊形ABCD中,A(1,1),
AB
=(6,0),點M是線段AB的中點,線段CM與BD交于點P(x,y).當|
AB
|=|
AD
|時,求x,y滿足的方程.

查看答案和解析>>

同步練習冊答案