【題目】某廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需的煤、電和產(chǎn)值如下表所示.

用煤(噸)

用電(千瓦)

產(chǎn)值(萬(wàn)元)

甲產(chǎn)品

3

50

12

乙產(chǎn)品

7

20

8

但國(guó)家每天分配給該廠的煤、電有限,每天供煤至多47噸,供電至多300千瓦,問(wèn)該廠如何安排生產(chǎn),使得該廠日產(chǎn)值最大?最大日產(chǎn)值為多少?

【答案】解:設(shè)生產(chǎn)甲、乙兩種產(chǎn)品各x噸、y噸,日產(chǎn)值為z萬(wàn)元 由題意得x,y的約束條件為: ,
目標(biāo)函數(shù)z=12x+8y,作出可行域(如圖陰影)
在圖中作直線y=﹣ x,當(dāng)平移至過(guò)點(diǎn)A時(shí),Z取最大值,
聯(lián)立兩直線方程可得A(4,5),代入計(jì)算可得Z的最大值為88,
故每天生產(chǎn)甲4噸,乙5噸,時(shí)日產(chǎn)值最大為88萬(wàn)元.

【解析】由題意得出約束條件和目標(biāo)函數(shù),作出可行域,變形目標(biāo)函數(shù)平移直線可得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=asinx﹣bcosx(a、b為常數(shù),a≠0,x∈R)在x= 處取得最小值,則函數(shù)y=f( ﹣x)是(
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn) 對(duì)稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn) 對(duì)稱
D.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《數(shù)學(xué)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開(kāi)平方得積.”若把以上這段文字寫(xiě)成公式,即S= .現(xiàn)有周長(zhǎng)為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且2asinB﹣ bcosA=0.
(1)求cosA;
(2)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x﹣
(1)討論f(x)的單調(diào)性.
(2)若f(x)在區(qū)間(1,2)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=(ex﹣1)(x﹣1)k , k∈N* , 若函數(shù)y=f(x)在x=1處取到極小值,則k的最小值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{bn}滿足bn=| |,其中a1=2,an+1=
(1)求b1 , b2 , b3 , 并猜想bn的表達(dá)式(不必寫(xiě)出證明過(guò)程);
(2)由(1)寫(xiě)出數(shù)列{bn}的前n項(xiàng)和Sn , 并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將A、B兩枚骰子各拋擲一次,觀察向上的點(diǎn)數(shù),問(wèn):
(1)共有多少種不同的結(jié)果?
(2)兩枚骰子點(diǎn)數(shù)之和是3的倍數(shù)的結(jié)果有多少種?
(3)兩枚骰子點(diǎn)數(shù)之和是3的倍數(shù)的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù)f(x)是定義在(﹣2,2)上的減函數(shù),則不等式f( )+f(2x﹣1)>0的解集是(
A.(﹣∞,
B.[﹣ ,+∞)
C.(﹣6,﹣
D.(﹣ ,

查看答案和解析>>

同步練習(xí)冊(cè)答案