不等式x2-4x>2ax+a對一切實(shí)數(shù)x都成立,則實(shí)數(shù)a的取值范圍是( 。
A、(1,4)
B、(-4,-1)
C、(-∞,-4)∪(-1,+∞)
D、(-∞,1)∪(4,+∞)
考點(diǎn):一元二次不等式的解法
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:把不等式x2-4x>2ax+a化為x2-(4+2a)x-a>0,根據(jù)不等式恒成立時(shí)△<0,求出a的取值范圍.
解答: 解:不等式x2-4x>2ax+a變形為
x2-(4+2a)x-a>0,
該不等式對一切實(shí)數(shù)x恒成立,
∴△<0,
即(4+2a)2-4•(-a)<0;
化簡得a2+5a+4<0,
解得-4<a<-1;
∴實(shí)數(shù)a的取值范圍是(-4,-1).
故答案為:B.
點(diǎn)評:本題考查了不等式的解法與應(yīng)用問題,也考查了函數(shù)的性質(zhì)與應(yīng)用問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知點(diǎn)A(2,
π
2
),B(2,π),點(diǎn)M是圓ρ=2cosθ上任意一點(diǎn),則點(diǎn)M到直線AB的距離的最小值為(  )
A、
2
B、
3
2
2
-1
C、
3
2
2
D、
3
2
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

規(guī)定:若函數(shù)f(x)的圖象經(jīng)過某種變換后所得圖象對應(yīng)函數(shù)的值域與f(x)的值域相同,則稱這種變換是f(x)的T變換,下面給出四個(gè)函數(shù)及其對應(yīng)的變換,其中不屬于f(x)的T變換的是(  )
A、f(x)=(x-2)2:將函數(shù)f(x)的圖象關(guān)于直線x=3對稱
B、f(x)=2x-3-4:將函數(shù)f(x)的圖象關(guān)于x軸對稱
C、f(x)=2x-4:將函數(shù)f(x)的圖象關(guān)于直線y=x對稱
D、f(x)=sin(2+
π
3
):將函數(shù)f(x)的圖象關(guān)于點(diǎn)(-
π
6
,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C
5
12
+
C
6
12
等于( 。
A、
C
5
13
B、
C
6
13
C、
A
11
13
D、
A
7
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題:
①時(shí)間、速度、加速度都是向量;
②零向量的長度為零,方向是任意的;
③若
a
,
b
是單位向量,則
a
=
b

④若非零向量
AB
CD
是共線向量,則A、B、C、D四點(diǎn)共線,其中正確命題的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:(1)a
1
3
b
1
2
•(-3a
1
2
b
1
3
)÷(
1
3
a
1
6
b
5
6

(2)(0.064)-
1
3
-(-
7
8
0+(
81
16
)
1
4
+|-0.01|
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足下列關(guān)系:a1=2a(a≠0,a為常數(shù)),an=2a-
a2
an-1
;數(shù)列{bn}滿足關(guān)系:bn=
1
an-a

(1)求證:an≠a;
(2)證明數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1和l2的夾角的平分線為y=x,如果l1的方程是x+2y+3=0,那么l2的方程為(  )
A、x-2y+3=0
B、2x+y+3=0
C、2x-y+3=0
D、x+2y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列函數(shù)中,奇函數(shù)是( 。
A、y=1-x2
B、y=x
1
3
C、y=e-x
D、y=x+1

查看答案和解析>>

同步練習(xí)冊答案