2.已知函數(shù)y=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sinxcosx+1,x∈R.
(1)求它的振幅、周期和初相;
(2)求此函數(shù)的單調(diào)增區(qū)間;
(3)若x∈[0,$\frac{π}{2}$],求函數(shù)的最大值、最小值及取得最值時x的取值集合.

分析 (1)應(yīng)用二倍角公式、化一公式;(2)用復(fù)合函數(shù)單調(diào)性求單調(diào)區(qū)間;(3)求函數(shù)最值.

解答 解:(1)$y=\frac{1}{2}•\frac{1+cos2x}{2}+\frac{\sqrt{3}}{4}sin2x+1$=$\frac{1}{4}cos2x+\frac{\sqrt{3}}{4}sin2x+\frac{5}{4}=\frac{1}{2}sin(2x+\frac{π}{6})+\frac{5}{4}$.故函數(shù)的振幅A=$\frac{1}{2}$,周期為π,初相為$\frac{π}{6}$.
(2)∵-$\frac{π}{2}+2kπ<2x+\frac{π}{6}<\frac{π}{2}+2kπ,k∈Z$∴$-\frac{π}{3}+kπ<x<\frac{π}{6}+kπ$,故此函數(shù)的單調(diào)增區(qū)間為$(-\frac{π}{3}+kπ,\frac{π}{6}+kπ),k∈Z$
(3)∵$x∈[0,\frac{π}{2}]∴2x+\frac{π}{6}∈[\frac{π}{6},\frac{7π}{6}]$∴$sin(2x+\frac{π}{6})∈[-\frac{1}{2},1]$,故函數(shù)的最大值為$\frac{7}{4}$,此時x的取值集合為{$\frac{π}{6}$};最小值為1,此時x的取值集合為{$\frac{π}{2}$}.

點(diǎn)評 本題考查了三角函數(shù)的基礎(chǔ)求值,重點(diǎn)考查了三角函數(shù)求最值問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和為Sn,a1=2,Sn=an+1-2.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足2${\;}^{\frac{1}{_{n}}}$=a1a2…an,且k•(b1+b2+…+bn)≤an(n∈N*),求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=2cos(2x-$\frac{π}{4}}$)圖象的一個對稱中心是( 。
A.($\frac{π}{2},2}$)B.($\frac{π}{4}$,$\sqrt{2}}$)C.(-$\frac{π}{2}$,2)D.($\frac{3π}{8}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,sinB=$\frac{12}{13}$,cosA=$\frac{3}{5}$,則sinC為( 。
A.$\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{63}{65}$D.$\frac{16}{65}$或$\frac{56}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在5升水中有一個病毒,現(xiàn)從中隨機(jī)地取出1升水,含有病毒的概率是多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知關(guān)于x的不等式|ax-1|+a|x-1|≥1(a>0).
(1)當(dāng)a=1時,求此不等式的解集;
(2)若此不等式的解集是R,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若向量$\overrightarrow{a}$=(-1,-1),$\overrightarrow$=(-1,1),則|2$\overrightarrow{a}$+$\overrightarrow$|=(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.$\sqrt{10}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知等差數(shù)列{an}的公差d∈(0,1),且$\frac{{{{sin}^2}{a_3}-{{sin}^2}{a_7}}}{{sin({a_3}+{a_7})}}$=-1,若a1∈(-$\frac{5π}{4}$,-$\frac{9π}{8}$)時,則數(shù)列{an}的前n項和為Sn取得最小值時n的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=$\frac{x-1}{2x+3}$的值域是(-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案