【題目】在中,角A、B、C的對邊分別為,已知向量且滿足.
(1)求角A的大;
(2)若試判斷的形狀.
【答案】(1),(2)直角三角形.
【解析】
試題分析:將題中所給式子進(jìn)行平方,將兩個(gè)向量的表示式帶入平方后的等式即可求出角A的余弦值,角A即可知;想要判斷三角形形狀,只要確定它的角與邊的關(guān)系,本題已給出三邊關(guān)系以及上一問的結(jié)果,可根據(jù)余弦定理,解出兩邊的關(guān)系,再運(yùn)用題中給出的關(guān)系,解出三邊關(guān)系,即可得到三角形形狀特點(diǎn),本問中解題方法有多種,答題者可根據(jù)自身掌握情況進(jìn)行選擇。
試題解系:(1)
代入有
即
(2)法一: ……①
又……②
聯(lián)立①②有,即
解得或
又,若,則,
,為直角三角形.
同理,若,則也為直角三角形
法二:根據(jù)正弦定理有,
又
整理得
或,或
或
∴為直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(, 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;
(2)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期為π.
(1)求f( )的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面是矩形,側(cè)面PAB是正三角形,且平面PAB⊥平面ABCD,E是PA的中點(diǎn),AC與BD的交點(diǎn)為M.
(1)求證:PC∥平面EBD;
(2)求證:BE⊥平面AED.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一元二次不等式﹣x2+x+2>0的解集是( )
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)設(shè)關(guān)于的一元二次方程 ()有兩根和,且滿足.
(1)試用表示;
(2)求證:數(shù)列是等比數(shù)列;
(3)當(dāng)時(shí),求數(shù)列的通項(xiàng)公式,并求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2an+n(n∈N*).
(1)求證數(shù)列{an﹣1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2(﹣an+1),求數(shù)列{ }的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=n2﹣4n﹣5.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=|an|,數(shù)列{bn}的前n項(xiàng)和為Tn , 求Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com