已知焦點在y軸上的橢圓
x2
m
+
y2
1
=1,其離心率為
3
2
,則實數(shù)m的值是(  )
A.4B.
1
4
C.4或
1
4
D.
1
2
因為焦點在y軸上的橢圓
x2
m
+
y2
1
=1,所以1>m,又橢圓的離心率為
3
2
,
所以
1-m
1
=
3
2
,解得m=
1
4

故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)P是橢圓
x2
16
+
y2
25
=1
上的點,若F1,F(xiàn)2是橢圓的兩個焦點,則|PF1|+|PF2|等于( 。
A.4B.5C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
25
+
y2
9
=1
上一點A到焦點F的距離為2,B為AF的中點,O為坐標(biāo)原點,則|OB|的值為( 。
A.8B.4C.2D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓中心在原點,它在x軸上的一個焦點與短軸兩端點的連線互相垂直,并且這個焦點到橢圓的最短距離為4(
2
-1),則橢圓的方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1,F(xiàn)2為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率e=
3
2
,則橢圓的方程為(  )
A.
x2
4
+
y2
3
=1
B.
x2
16
+
y2
3
=1
C.
x2
16
+
y2
4
=1
D.
x2
16
+
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩焦點為F1、F2,若橢圓上存在一點Q,使∠F1QF2=120°,橢圓離心率e的取值范圍為( 。
A.
3
2
≤e<1
B.
6
3
<e<1
C.0<e≤
6
3
D.
1
2
<e<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

兩個正數(shù)1、9的等差中項是a,等比中項是b,則曲線
x2
a
+
y2
b
=1
的離心率為( 。
A.
10
5
B.
2
10
5
C.
4
5
D.
10
5
2
10
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若P為橢圓
x2
9
+
y2
6
=1
上一點,F(xiàn)1和F2為橢圓的兩個焦點,∠F1PF2=60°,則|PF1|•|PF2|的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,已知中心在坐標(biāo)原點的雙曲線經(jīng)過點,且它的右焦點與拋物線的焦點相同,則該雙曲線的標(biāo)準(zhǔn)方程為     

查看答案和解析>>

同步練習(xí)冊答案