3.全組有8個(gè)男同學(xué),4個(gè)女同學(xué),現(xiàn)選出5個(gè)代表,最多有2個(gè)女同學(xué)當(dāng)選的選法種數(shù)是( 。
A.672B.616C.336D.280

分析 至多有兩名女同學(xué),分為三類(lèi):沒(méi)有女同學(xué),有1名女同學(xué),2名女同學(xué).

解答 解:至多有兩名女同學(xué),分為三類(lèi):沒(méi)有女同學(xué),有C85=56選法,
1名女同學(xué),有C41C84=280種選法,
2名女同學(xué),有C42C83=336種選法,
根據(jù)分類(lèi)計(jì)數(shù)原理可得56+280+336=672,
故選:A

點(diǎn)評(píng) 本題考查計(jì)數(shù)原理的應(yīng)用,考查分類(lèi)討論的數(shù)學(xué)思想,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=2Sn+1 (n∈N*),等差數(shù)列{bn}中,bn>0 (n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比數(shù)列.則數(shù)列{an•bn}的前n項(xiàng)和Tn為(  )
A.3n-1B.2n+1C.n•3nD.-2n•3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)點(diǎn)A(0,1),B(3,2),則$\overrightarrow{AB}$=( 。
A.(-1,4)B.(1,3)C.(3,1)D.(7,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,AD⊥平面ABC,CE∥AD,且AB=AC=CE=2AD.
(1)試在線段BE上確定一點(diǎn)M,使得DM∥平面ABC;
(2)若AB⊥AC,求平面BDE與平面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)y=x2-2lnx的單調(diào)增區(qū)間為( 。
A.(-∞,-1)∪(0,1)B.(1,+∞)C.(-1,0)∪(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知直線x-$\sqrt{2}$y-$\sqrt{2}$=0經(jīng)過(guò)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)和頂點(diǎn),則橢圓C的離心率為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,焦距為2,過(guò)點(diǎn)F2作直線l交橢圓于M、N兩點(diǎn),△F1MN的周長(zhǎng)為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l分別交直線y=$\frac{c}{a}$x,y=-$\frac{c}{a}$x于P,Q兩點(diǎn),求$\frac{{S}_{△OMN}}{|PQ|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知直線 l1:mx+( m+1)y+2=0,l 2:( m+1)x+( m+4)y-3=0,則“m=-2”是“l(fā)1⊥l2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)設(shè)${(1+x+{x^2})^3}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_6}{x^6}$,求a2,a3
(2)設(shè)$x={(25+2\sqrt{155})^{20}}+{(25+2\sqrt{155})^{17}}$,其x的整數(shù)部分的個(gè)位數(shù)字.

查看答案和解析>>

同步練習(xí)冊(cè)答案