若拋物線的方程是x2=-16y,則拋物線焦點(diǎn)的坐標(biāo)為
 
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專(zhuān)題:圓錐曲線的定義、性質(zhì)與方程
分析:拋物線x2=-2py(p>0)的焦點(diǎn)坐標(biāo)為(0,-
p
2
)
解答: 解:∵拋物線x2=-16y中,2p=16,解得p=8,
∴拋物線x2=-2y的焦點(diǎn)坐標(biāo)為(0,-4)
故答案為:(0,-4)
點(diǎn)評(píng):本題考查拋物線的焦點(diǎn)坐標(biāo)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意拋物線的簡(jiǎn)單性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|
1
|x|
-1|,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有6個(gè)不同的實(shí)數(shù)解,則b,c的取值情況可能的是:
 

①-1<b<0,c=0   ②1+b+c>0,c>0   ③1+b+c<0,c>0   ④1+b+c=0,0<c<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)球的外切正方體的全面積等于24cm2,則此球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=2-x+lnx,下列說(shuō)法正確的是( 。
A、無(wú)零點(diǎn)
B、有且僅有一個(gè)零點(diǎn)
C、有兩個(gè)零點(diǎn)x1,x2,且(x1-1)(x2-1)>0
D、有兩個(gè)零點(diǎn)x1,x2,且(x1-1)(x2-1)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:ρ=4sinθ與直線
x=3t
y=2-4t
(t為參數(shù))交于A,B兩點(diǎn),則|AB|=( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sinxcosx-2cos2x(x∈R).
(1)求函數(shù)f(x)的最大值及取得最大值時(shí)相應(yīng)的x的值;
(2)求函數(shù)f(x)的零點(diǎn)的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
為單位向量,且?jiàn)A角為
3
,則向量2
a
+
b
a
的夾角大小是( 。
A、
3
B、
π
2
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x2+1,x>0
2-x,x≤0
,則不等式f(x)<4的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)的圖象過(guò)點(diǎn)(0,-1),(1,-1)和(4,-9),則其解析式是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案