17.已知函數(shù)f(x)=$\frac{{x}^{3}}{3}$-$\frac{2}$x2+ax+c(a>0,b>0)則函數(shù)g(x)=alnx+$\frac{f′(x)}{a}$在點(diǎn)(b,g(b))處切線的斜率最小值是2.

分析 根據(jù)已知條件得到g(x)=alnx+$\frac{f′(x)}{a}$的導(dǎo)函數(shù),根據(jù)限制性條件a>0,b>0和基本不等式進(jìn)行解答.

解答 解:因?yàn)間(x)=alnx+$\frac{f′(x)}{a}$,
所以g′(x)=$\frac{a}{x}$+$\frac{2x-b}{a}$.
又因?yàn)閍>0,b>0,
所以g′(b)=$\frac{a}$+$\frac{2b-b}{a}$=$\frac{a}$+$\frac{a}$≥2,
所以斜率的最小值是2.
故答案是:2.

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的計(jì)算,根據(jù)導(dǎo)數(shù)的幾何意義求出切線斜率是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|2x-1|+|2x+1|
(Ⅰ)畫出y=f(x)的圖象;
(Ⅱ)判斷f(x)的奇偶性
(Ⅲ)根據(jù)圖象填空:求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐E-ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=1,F(xiàn)為線段DE中點(diǎn).
(1)求證:CD⊥平面ADE;
(2)求V三棱錐E-BCF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知菱形ABCD的兩個(gè)頂點(diǎn)坐標(biāo):A(-2,1),C(0,5),則對(duì)角線BD所在直線方程為( 。
A.x+2y-5=0B.2x+y-5=0C.x-2y+5=0D.2x-y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.?dāng)?shù)列{an}的前n項(xiàng)和${S_n}=2{a_n}-3({n∈{N^*}})$,則a6=96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.x2+(y-2)2=0是x(y-2)=0的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$tanα=\frac{-1}{3}$,計(jì)算:
(1)$\frac{sinα+2cosα}{5cosα-sinα}$;
(2)$\frac{2}{{2sinαcosα+{{cos}^2}α}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.正三棱柱A1B1C1-ABC,$AC=2,C{C_1}=\sqrt{2}$,M,N為A1C1,A1B1的中點(diǎn),則異面直線AM與BN所成角( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知p:x=1,¬q:x2+8x-9=0,則下列為真命題的是( 。
A.若p,則qB.若¬q,則pC.若q,則¬pD.若¬p,則q

查看答案和解析>>

同步練習(xí)冊(cè)答案