【題目】設(shè)函數(shù), 表示導(dǎo)函數(shù).
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)討論函數(shù)的單調(diào)區(qū)間;
(3)對于曲線上的不同兩點,求證:存在唯一的,使直線的斜率等于.
【答案】(1)(2)見解析(3)見解析
【解析】試題分析:
(1)將 代入函數(shù)的方程,結(jié)合導(dǎo)函數(shù)與函數(shù)切線的關(guān)系求解函數(shù)的切線方程即可;
(2)首先求得 ,然后結(jié)合導(dǎo)函數(shù)的性質(zhì)分類討論實數(shù) 的取值范圍即可得出函數(shù)的單調(diào)區(qū)間;
(3)首先證明點 存在,然后利用一次函數(shù)的單調(diào)性證明 的唯一性即可.
試題解析:
(1)時, , , , 在點處的切線方程為;
(2), 的定義域為
當(dāng)時, 在區(qū)間單調(diào)遞增;
當(dāng)時, 在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減.
(3)∵,∴,化簡得
即,且唯一.
設(shè),則,
再設(shè), ,∴,
∴在是增函數(shù),
∴,同理,
∴方程在有解.
∵一次函數(shù)在 是增函數(shù),
∴方程在有唯一解,命題成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,側(cè)棱垂直于底面,分別是的中點.
(1)求證: 平面平面;
(2)求證: 平面;
(3)求三棱錐體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)在處取得極值,且對恒成立,求實數(shù)的取值范圍;
(3)當(dāng)且時,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記表示中的最大值,如,已知函數(shù).
(1)求函數(shù)在上的值域;
(2)試探討是否存在實數(shù), 使得對恒成立?若存在,求的取值范圍;
若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為.
(Ⅰ)求滿足的概率;
(Ⅱ)設(shè)三條線段的長分別為和5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的值域;
(2)設(shè)函數(shù),若對任意,總存在,使得成
立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,cos C=.
(1)若·=,求c的最小值;
(2)設(shè)向量x=(2sin B,-),y=,且x∥y,求sin(B-A)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的直角坐標(biāo)方程;
(2)已知直線與軸的交點為,與曲線的交點為, ,若的中點為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中裝有編號為的3個黑球和編號為的2個紅球,從中任意摸出2個球.
(Ⅰ)寫出所有不同的結(jié)果;
(Ⅱ)求恰好摸出1個黑球和1個紅球的概率;
(Ⅲ)求至少摸出1個紅球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com