A. | 1,2,3 | B. | 2,3,4 | C. | 3,4,5 | D. | 4,5,6 |
分析 根據(jù)三角形滿足的兩個條件,設(shè)出三邊長分別為n-1,n,n+1,三個角分別為α,π-3α,2α,由n-1,n+1,sinα,以及sin2α,利用正弦定理列出關(guān)系式,根據(jù)二倍角的正弦函數(shù)公式化簡后,表示出cosα,然后利用余弦定理得到(n-1)2=(n+1)2+n2-2(n-1)n•cosα,將表示出的cosα代入,整理后得到關(guān)于n的方程,求出方程的解得到n的值,從而得到三邊長的值,
解答 解:設(shè)三角形三邊是連續(xù)的三個自然n-1,n,n+1,三個角分別為α,π-3α,2α,
由正弦定理可得:$\frac{n-1}{sinα}$=$\frac{n+1}{sin2α}$,
∴cosα=$\frac{n+1}{2(n-1)}$,
再由余弦定理可得:(n-1)2=(n+1)2+n2-2(n+1)n•cosα=(n+1)2+n2-2(n+1)n•$\frac{n+1}{2(n-1)}$,
化簡可得:n2-5n=0,解得:n=5或n=0(舍去),
∴n=5,故三角形的三邊長分別為:4,5,6
故選:D.
點評 本題主要考察正弦定理在解三角形中的應(yīng)用問題.解決本題的關(guān)鍵在于根據(jù)條件得到:(n-1)2=(n+1)2+n2-2(n+1)n•cosα=(n+1)2+n2-2(n+1)n•$\frac{n+1}{2(n-1)}$,化簡進(jìn)而求出結(jié)論,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的圖象過點$(0,\frac{1}{2})$ | B. | f(x)在$[{\frac{5π}{12},\frac{2π}{3}}]$上是減函數(shù) | ||
C. | f(x)的一個對稱中心是點$({\frac{5π}{12},0})$ | D. | f(x)的最大值為A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 10 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分?jǐn)?shù) | [0,90) | [90,105) | [105,1200) | [120,135) | [135,150) |
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
乙班頻數(shù) | 1 | 3 | 6 | 5 |
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com