已知函數(shù), 
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)若,求的值.

(1),單調(diào)遞增區(qū)間為;(2).

解析試題分析:(1)由題設(shè)可知
再利用正弦函數(shù)的性質(zhì)求函數(shù)的最小正周期和單調(diào)區(qū)間;
(2)由,再將化成進而求值.
解:(1)易得

=                            (3分)
所以,函數(shù)的最小正周期
又由
得:
所以,函數(shù)的單調(diào)遞增區(qū)間為(6分)
(2)由題意,
                                            (8分)
所以,(12分)
考點:1、兩角和與差的三角函數(shù)公式;2、正弦函數(shù)的性質(zhì);3、同角三角函數(shù)的基本關(guān)系式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,函數(shù),且的圖像過點和點.
(1)求的值;
(2)將的圖像向左平移個單位后得到函數(shù)的圖像,若圖像上各最高點到點的距離的最小值為1,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的最小正周期和最值;
(2)已知, 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖像關(guān)于直線對稱,且圖像上相鄰兩個最高點的距離為.
(1)求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若是第二象限角,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)圖象的一部分如圖所示.

(1)求函數(shù)的解析式;
(2)當(dāng)時,求函數(shù)的最大值與最小值及相應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=Asin(2x+θ),其中A≠0,θ∈(0,).

(1)若函數(shù)f(x)的圖象過點E(-,1),F(xiàn)(,),求函數(shù)f(x)的解析式;
(2)如圖,點M,N是函數(shù)y=f(x)的圖象在y軸兩側(cè)與x軸的兩個相鄰交點,函數(shù)圖象上一點P(t,)滿足·,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)內(nèi)只取到一個最大值和一個最小值,且當(dāng)時,;當(dāng)時,.(1)求此函數(shù)的解析式;(2)求此函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)相鄰兩個對稱軸之間的距離是,且滿足,
(1)求的單調(diào)遞減區(qū)間;
(2)在鈍角△ABC中,a、b、c分別為角A、B、C的對邊,sinB=,求△ABC的面積。

查看答案和解析>>

同步練習(xí)冊答案